Study on the Application of SMES to Improve Power Quality

Article Preview

Abstract:

With the development of modern technology, high quality power supply becomes more desirable in everyday life. Among problems related with the power quality, the most urgent is the voltage dip; with the application of power electronics devices, the power system is polluted by harmonics. SMES (Superconducting Magnet Energy Storage) system can not only compensate the voltage dip, but also provide a load-fluctuation compensation and active power filter. In the paper the main structure of SMES system is introduced; the necessity to use SMES are demonstrated by analyzing the problem of power quality. The analysis shows that SMES system is effective in improving the power quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

647-650

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. J. Bollen, Understanding Power Quality Problems: IEEE Press, (2000).

Google Scholar

[2] M. H. Ali, W. Bin, and R. A. Dougal, An overview of SMES applications in power and energy systems, IEEE Transactions on Sustainable Energy, vol. 1, no. 1, pp.38-47, April (2010).

DOI: 10.1109/tste.2010.2044901

Google Scholar

[3] J. Kozak, M. Majka, S. Kozak, and T. Janowski, Performance of SMES system with HTS magnet, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp.1348-1351, (2010).

DOI: 10.1109/tasc.2010.2042938

Google Scholar

[4] W. J. Yuan, W. Xian, M. Ainslie, Z. Hong, Y. Yan, R. Pei, Y. Jiang, and T. A. Coombs, Design and test of a superconducting magnetic energy storage (SMES) coil, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp.1379-1382, (2010).

DOI: 10.1109/tasc.2010.2041201

Google Scholar

[5] J. H. Choi, H. G. Cheon, J. W. Choi, H. J. Kim, K. C. Seong, and S. H. Kim, A study on basic insulation characteristics of 2. 5 MJ class conduction-cooled HTS SMES, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp.1344-1347, (2010).

DOI: 10.1109/tasc.2010.2042158

Google Scholar

[6] Zhu Xiaoguang. Weighted Least Square Estimation Algorithm with Software Phase-Locked Loop for Voltage Sag Compensation by SMES. 35th Annul IEEE Power Electronics Specialists Conference, 2004: 2034- (2038).

DOI: 10.1109/pesc.2004.1355430

Google Scholar

[7] N. H. Woodley, L. Morgan, and A. Sindaram, Experience with an inverter-based dynamic voltage restorer, IEEE Trans. Power Del. , vol. 14, no. 3, pp.1181-1186, (1999).

DOI: 10.1109/61.772390

Google Scholar

[8] P. Heine and M. Lehtonen, Voltage sag distributions caused by power system faults, , IEEE Trans. Power Syst. , vol. 18, pp.1367-1373, Nov. (2003).

DOI: 10.1109/tpwrs.2003.818606

Google Scholar

[9] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, Dynamic voltage restoration with minimum energy injection, , IEEE Trans. Power Syst. , vol. 15, no. 1, pp.51-57, (2000).

DOI: 10.1109/59.852100

Google Scholar

[10] Jiang Xiaohua. A 0. 3MJ SMES Magnet of a Voltage Sag Compensation System. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 717-720.

DOI: 10.1109/tasc.2004.830083

Google Scholar

[11] T. Mito, H. Chikaraishi, A. Kawagoe, R. Maekawa, R. Abe, T. Baba, K. Okumura, A. Kuge, M. Iwakuma, and F. Sumiyoshi, Summary of a 1MJ conduction-cooled LTS pulse coil developed for 1 MW, 1 s UPS-SMES, IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp.1999-2003, (2009).

DOI: 10.1109/tasc.2009.2018480

Google Scholar

[12] T. Katagiri, H. Nakabayashi, Y. Nijo, T. Tamada, T. Noda, N. Hirano, T. Nagata, S. Nagaya, M. Yamane, Y. Ishii, and T. Nitta, Field test result of 10 MVA/20 MJ SMES for load fluctuation compensation, IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp.1993-1998, June (2009).

DOI: 10.1109/tasc.2009.2018479

Google Scholar

[13] N. Jenkins, Power electronics applied to the distribution systems, , in IEE Colloquium, Flexible AC Transmission Systems , 1998, pp.311-317. Ref. no. 19981500.

DOI: 10.1049/ic:19980969

Google Scholar

[14] V. Karasik, K. Dixon, C. Weber, B. Batchelder, G. Campbell, and P. Ribeiro, SMES for power utility applications: a review of technical and cost considerations, , IEEE Trans. Appl. Supercond. , vol. 9, pp.541-546, Jun. (1999).

DOI: 10.1109/77.783354

Google Scholar

[15] J. Tian, Y. Q. Zhu, and C. H. Chen, Application of energy storage technologies in distributed generation, Electrical technology, no. 8, pp.29-32, (2010).

Google Scholar

[16] S. Nomura, T. Shintomi, S. Akita, T. Nitta, R. Shimada, S. Meguro, Technical and cost evaluation on SMES for electric power compensation, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp.1373-1378, June (2010).

DOI: 10.1109/tasc.2009.2039745

Google Scholar

[17] H. Y. Jung, A. R. Kim, J. H. Kim, M. Park, I. K. Yu, S. H. Kim, Kideok Sim, H. J. Kim, K. C. Seong, T. Asao, and J. Tamura, A study on the operating characteristics of SMES for the dispersed power generation system, IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp.2028-2031, June (2009).

DOI: 10.1109/tasc.2009.2018495

Google Scholar