[1]
Y. Tokiwa, B.P. Calabia Biodegradability and Biodegradation of Polyesters. J Polym Environ 15: 259–267(2007).
DOI: 10.1007/s10924-007-0066-3
Google Scholar
[2]
I. Sartorius Biodegradable plastics in the social and political environment. Biopolymers Online. doi: 10. 1002/3527600035. bpola015(2005).
Google Scholar
[3]
A. Albertsson, I. Varma Aliphatic polyesters: synthesis, properties and applications. Degradable Aliphatic Polyesters. Springer Berlin Heidelberg, p.1–40(2002).
DOI: 10.1007/3-540-45734-8_1
Google Scholar
[4]
Y. Ohya , A. Takahashi , K. Nagahama Biodegradable Polymeric Assemblies for Biomedical Materials. In: S. Kunugi , T. Yamaoka (eds) Polymers in Nanomedicine. Springer Berlin Heidelberg, p.65–114(2011).
DOI: 10.1007/12_2011_160
Google Scholar
[5]
P. Zinck One-step synthesis of polyesters specialties for biomedical applications. Reviews in Environmental Science and Bio/Technology 8: 231–234(2009).
DOI: 10.1007/s11157-009-9168-9
Google Scholar
[6]
R. Riva , S. Schmeits , F. Stoffelbach , C. Jérôme , R. Jérôme , P. Lecomte Combination of ring-opening polymerization and click, chemistry towards functionalization of aliphatic polyesters. Chem Commun (Cambridge, U K) 40: 5334–5336(2005).
DOI: 10.1039/b510282k
Google Scholar
[7]
Y. Chen , P.A. Wilbon , Y.P. Chen , J. Zhou , M. Nagarkatti , C. Wang , F. Chu , A.W. Decho, C. Tang Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv 2: 10275–10282(2012).
DOI: 10.1039/c2ra21675b
Google Scholar
[8]
T. Naolou , K. Busse , J. Kressler Synthesis of well-defined graft copolymers by combination of enzymatic polycondensation and click, chemistry. Biomacromolecules 11: 3660–3667(2010).
DOI: 10.1021/bm1011085
Google Scholar
[9]
S. Kobayashi , A. Makino Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109: 5288–353(2009).
DOI: 10.1021/cr900165z
Google Scholar
[10]
D.R. Patil , D.G. Rethwisch , J. S Dordick Enzymatic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnol Bioeng 37: 639–46(1991).
DOI: 10.1002/bit.260370706
Google Scholar
[11]
A. Kumar , A.S. Kulshrestha , W. Gao , R.A. Gross Versatile Route to Polyol Polyesters by Lipase Catalysis. Macromolecules 36: 8219–8221(2003).
DOI: 10.1021/ma0351827
Google Scholar
[12]
Y. Yang , W. Lu , J. Cai , Y. Hou , S. Ouyang , W. Xie , R.A. Gross Poly(oleic diacid- co -glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis. Macromolecules 44: 1977–1985(2011).
DOI: 10.1021/ma102939k
Google Scholar
[13]
H. Uyama , K. Inada , S. Kobayashi Regio selective polymerization of divinyl sebacate and triols using lipase catalyst. Macromol Rapid Commun 20: 171–174(1999).
DOI: 10.1002/(sici)1521-3927(19990401)20:4<171::aid-marc171>3.0.co;2-2
Google Scholar
[14]
P. Villeneuve , T.A. Foglia ., T.J. Mangos , A. Nuñez Synthesis of polyfunctional glycerol esters: Lipase-Catalyzed esterification of glycerol with diesters. J Am Oil Chem Soc 75: 1545–1549(1998).
DOI: 10.1007/s11746-998-0092-x
Google Scholar
[15]
B.J. Kline , E.J. Beckman , A.J. Russell One-Step Biocatalytic Synthesis of Linear Polyesters with Pendant Hydroxyl Groups. J Am Chem Soc 120: 9475–9480(1998).
DOI: 10.1021/ja9808907
Google Scholar
[16]
J. Hu , W. Gao , A. Kulshrestha , R.A. Gross Sweet Polyesters,: Lipase-Catalyzed Condensation−Polymerizations of Alditols. Macromolecules 39: 6789–6792(2006).
DOI: 10.1021/ma0612834
Google Scholar
[17]
M. Kato , K. Toshima , S. Matsumura Direct enzymatic synthesis of a polyester with free pendant mercapto groups. Biomacromolecules 10: 366–373(2009).
DOI: 10.1021/bm801132d
Google Scholar
[18]
A.S. Kulshrestha , B. Sahoo , W. Gao , H. Fu , R.A. Gross Lipase Catalysis. A Direct Route to Linear Aliphatic Copolyesters of Bis(hydroxymethyl)butyric Acid with Pendant Carboxylic Acid Groups. Macromolecules 38: 3205–3213(2005).
DOI: 10.1021/ma0480291
Google Scholar
[19]
A. Olsson , M. Lindström , T. Iversen Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9, 10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 8: 757–760. (2007).
DOI: 10.1021/bm060965w
Google Scholar
[20]
T. Naolou , V.M. Weiss , D. Conrad , K. Busse , K. Mäder Fatty acid modified poly(glycerol adipate)-polymeric analogues of glycerides Polymer. In: Scholz C, Kressler J (eds) Tailored Polymer Architectures for Pharmaceutical and Biomedical Applications. ACS Symposium Series, Washington, p.1–16 (2013).
DOI: 10.1021/bk-2013-1135.ch004
Google Scholar
[21]
M. Rossi , M. Pagliaro The Future of Glycerol. 2nd ed. Royal Society of Chemistry, Cambridge, p.192(2010).
Google Scholar
[22]
T.S. S Dikshith Handbook of Chemicals and Safety. CRC Press, Bangalore, p.531(2010).
Google Scholar
[23]
V.M. Weiss , T. Naolou , T. Groth , J. Kressler , K. Mäder In vitro toxicity of stearoyl-poly(glycerol adipate) nanoparticles. J Appl Biomater Function Mater 10: 163–169(2012).
DOI: 10.5301/jabfm.2012.10294
Google Scholar
[24]
P. Kallinteri , S. Higgins , G.A. Hutcheon , C.B. St Pourçain , M.C. Garnett Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules 6: 1885–1894 (2005).
DOI: 10.1021/bm049200j
Google Scholar
[25]
S. Puri , P. Kallinteri , S. Higgins , G.A. Hutcheon , Garnett MC Drug incorporation and release of water soluble drugs from novel functionalized poly(glycerol adipate) nanoparticles. J Controlled Release 125: 59–67(2008).
DOI: 10.1016/j.jconrel.2007.09.009
Google Scholar
[26]
V.M. Weiss , T. Naolou , G. Hause , J. Kuntsche , J. Kressler , K. Mäder Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers: From nanocubes over ellipsoids to nanospheres. J Controlled Release 158: 156–164(2012).
DOI: 10.1016/j.jconrel.2011.09.077
Google Scholar
[27]
V.M. Weiss , T. Naolou , E. Amado , K. Busse , K. Mäder , J. Kressler Formation of structured polygonal nanoparticles by phase-separated comb-like polymers. Macromol Rapid Commun 33: 35–40(2012).
DOI: 10.1002/marc.201100565
Google Scholar
[28]
Y. Xia , X. Yin , N.A.D. Burke , H.D.H. Stöver Thermal Response of Narrow-Disperse Poly( N -isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules 38: 5937–5943(2005).
DOI: 10.1021/ma050261z
Google Scholar
[29]
J.V.M. Weaver , I. Bannister , K.L. Robinson , X. Bories-Azeau , S.P. Armes , M. Smallridge, P. McKenna Stimulus-Responsive Water-Soluble Polymers Based on 2-Hydroxyethyl Methacrylate. Macromolecules 37: 2395–2403(2004).
DOI: 10.1021/ma0356358
Google Scholar
[30]
J. A Opsteen , J.C. M Van Hest Modular synthesis of ABC type block copolymers by click, chemistry. J Polym Sci, Part A: Polym Chem 45: 2913–2924(2007).
DOI: 10.1002/pola.22047
Google Scholar
[31]
P. Decuzzi , R. Pasqualini , W. Arap , M. Ferrari Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26: 235–243(2009).
DOI: 10.1007/s11095-008-9697-x
Google Scholar
[32]
S. Kundu , A. Datta ., S. Hazra Growth of a collapsing Langmuir monolayer. Physical Review E 73: 1–7(2006).
DOI: 10.1103/physreve.73.051608
Google Scholar
[33]
S. Kundu , A. Datta , S. Hazra Effect of metal ions on monolayer collapses. Langmuir 21: 5894–5900(2005).
DOI: 10.1021/la0505770
Google Scholar
[34]
D. Vaknin , W. Bu , S.K. Satija , A. Travesset Ordering by collapse: formation of bilayer and trilayer crystals by folding Langmuir monolayers. Langmuir 23: 1888–1897(2007).
DOI: 10.1021/la062672u
Google Scholar
[35]
H.M. McConnell Structures and Transitions in Lipid Monolayers at the Air-Water Interface. Annu Rev Phys Chem 42: 171–195(1991).
DOI: 10.1146/annurev.pc.42.100191.001131
Google Scholar
[36]
P. Scholtysek , Z. Li , J. Kressler , A. Blume Interactions of DPPC with semitelechelic poly(glycerol methacrylate)s with perfluoroalkyl end groups. Langmuir 28: 15651–15662 (2012).
DOI: 10.1021/la3028226
Google Scholar