Synthesis and Characterization of Stearoyl Modified Poly (Glycerol Adipate) Containing ATRP Initiator on its Backbone

Article Preview

Abstract:

Poly (glycerol adipate) is enzymatically prepared by reacting glycerol with divinyl adipate in the presence of a lipase as catalyst from Candida Antarctica type B (CAL-B). The reaction yields linear polyesters with free pendent hydroxyl groups. Poly (glycerol adipate) is hydrophobically modified by incomplete acylation of some of the pendent hydroxyl groups using stearoyl chloride. The resulting polymer is further functionalized with α-bromoisobutyryl groups. The final polymer is purified and well characterized to calculate the ratio of substitution in both cases. Furthermore, nanoparticles in water are prepared from the functionalized polymer using the interfacial precipitation method. Dynamic light scattering measurements depict nanoparticles with relatively narrow size distributions and with an average hydrodynamic radius of 70 nm. Additionally, transmission electron microscopy images reveal well dispersed spherical nanoparticles with nanophase separation. Finally, the interactions between the graft copolymers and lipid monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are investigated on a Langmuir trough equipped with a fluorescence microscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Tokiwa, B.P. Calabia Biodegradability and Biodegradation of Polyesters. J Polym Environ 15: 259–267(2007).

DOI: 10.1007/s10924-007-0066-3

Google Scholar

[2] I. Sartorius Biodegradable plastics in the social and political environment. Biopolymers Online. doi: 10. 1002/3527600035. bpola015(2005).

Google Scholar

[3] A. Albertsson, I. Varma Aliphatic polyesters: synthesis, properties and applications. Degradable Aliphatic Polyesters. Springer Berlin Heidelberg, p.1–40(2002).

DOI: 10.1007/3-540-45734-8_1

Google Scholar

[4] Y. Ohya , A. Takahashi , K. Nagahama Biodegradable Polymeric Assemblies for Biomedical Materials. In: S. Kunugi , T. Yamaoka (eds) Polymers in Nanomedicine. Springer Berlin Heidelberg, p.65–114(2011).

DOI: 10.1007/12_2011_160

Google Scholar

[5] P. Zinck One-step synthesis of polyesters specialties for biomedical applications. Reviews in Environmental Science and Bio/Technology 8: 231–234(2009).

DOI: 10.1007/s11157-009-9168-9

Google Scholar

[6] R. Riva , S. Schmeits , F. Stoffelbach , C. Jérôme , R. Jérôme , P. Lecomte Combination of ring-opening polymerization and click, chemistry towards functionalization of aliphatic polyesters. Chem Commun (Cambridge, U K) 40: 5334–5336(2005).

DOI: 10.1039/b510282k

Google Scholar

[7] Y. Chen , P.A. Wilbon , Y.P. Chen , J. Zhou , M. Nagarkatti , C. Wang , F. Chu , A.W. Decho, C. Tang Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv 2: 10275–10282(2012).

DOI: 10.1039/c2ra21675b

Google Scholar

[8] T. Naolou , K. Busse , J. Kressler Synthesis of well-defined graft copolymers by combination of enzymatic polycondensation and click, chemistry. Biomacromolecules 11: 3660–3667(2010).

DOI: 10.1021/bm1011085

Google Scholar

[9] S. Kobayashi , A. Makino Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109: 5288–353(2009).

DOI: 10.1021/cr900165z

Google Scholar

[10] D.R. Patil , D.G. Rethwisch , J. S Dordick Enzymatic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnol Bioeng 37: 639–46(1991).

DOI: 10.1002/bit.260370706

Google Scholar

[11] A. Kumar , A.S. Kulshrestha , W. Gao , R.A. Gross Versatile Route to Polyol Polyesters by Lipase Catalysis. Macromolecules 36: 8219–8221(2003).

DOI: 10.1021/ma0351827

Google Scholar

[12] Y. Yang , W. Lu , J. Cai , Y. Hou , S. Ouyang , W. Xie , R.A. Gross Poly(oleic diacid- co -glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis. Macromolecules 44: 1977–1985(2011).

DOI: 10.1021/ma102939k

Google Scholar

[13] H. Uyama , K. Inada , S. Kobayashi Regio selective polymerization of divinyl sebacate and triols using lipase catalyst. Macromol Rapid Commun 20: 171–174(1999).

DOI: 10.1002/(sici)1521-3927(19990401)20:4<171::aid-marc171>3.0.co;2-2

Google Scholar

[14] P. Villeneuve , T.A. Foglia ., T.J. Mangos , A. Nuñez Synthesis of polyfunctional glycerol esters: Lipase-Catalyzed esterification of glycerol with diesters. J Am Oil Chem Soc 75: 1545–1549(1998).

DOI: 10.1007/s11746-998-0092-x

Google Scholar

[15] B.J. Kline , E.J. Beckman , A.J. Russell One-Step Biocatalytic Synthesis of Linear Polyesters with Pendant Hydroxyl Groups. J Am Chem Soc 120: 9475–9480(1998).

DOI: 10.1021/ja9808907

Google Scholar

[16] J. Hu , W. Gao , A. Kulshrestha , R.A. Gross Sweet Polyesters,: Lipase-Catalyzed Condensation−Polymerizations of Alditols. Macromolecules 39: 6789–6792(2006).

DOI: 10.1021/ma0612834

Google Scholar

[17] M. Kato , K. Toshima , S. Matsumura Direct enzymatic synthesis of a polyester with free pendant mercapto groups. Biomacromolecules 10: 366–373(2009).

DOI: 10.1021/bm801132d

Google Scholar

[18] A.S. Kulshrestha , B. Sahoo , W. Gao , H. Fu , R.A. Gross Lipase Catalysis. A Direct Route to Linear Aliphatic Copolyesters of Bis(hydroxymethyl)butyric Acid with Pendant Carboxylic Acid Groups. Macromolecules 38: 3205–3213(2005).

DOI: 10.1021/ma0480291

Google Scholar

[19] A. Olsson , M. Lindström , T. Iversen Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9, 10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 8: 757–760. (2007).

DOI: 10.1021/bm060965w

Google Scholar

[20] T. Naolou , V.M. Weiss , D. Conrad , K. Busse , K. Mäder Fatty acid modified poly(glycerol adipate)-polymeric analogues of glycerides Polymer. In: Scholz C, Kressler J (eds) Tailored Polymer Architectures for Pharmaceutical and Biomedical Applications. ACS Symposium Series, Washington, p.1–16 (2013).

DOI: 10.1021/bk-2013-1135.ch004

Google Scholar

[21] M. Rossi , M. Pagliaro The Future of Glycerol. 2nd ed. Royal Society of Chemistry, Cambridge, p.192(2010).

Google Scholar

[22] T.S. S Dikshith Handbook of Chemicals and Safety. CRC Press, Bangalore, p.531(2010).

Google Scholar

[23] V.M. Weiss , T. Naolou , T. Groth , J. Kressler , K. Mäder In vitro toxicity of stearoyl-poly(glycerol adipate) nanoparticles. J Appl Biomater Function Mater 10: 163–169(2012).

DOI: 10.5301/jabfm.2012.10294

Google Scholar

[24] P. Kallinteri , S. Higgins , G.A. Hutcheon , C.B. St Pourçain , M.C. Garnett Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules 6: 1885–1894 (2005).

DOI: 10.1021/bm049200j

Google Scholar

[25] S. Puri , P. Kallinteri , S. Higgins , G.A. Hutcheon , Garnett MC Drug incorporation and release of water soluble drugs from novel functionalized poly(glycerol adipate) nanoparticles. J Controlled Release 125: 59–67(2008).

DOI: 10.1016/j.jconrel.2007.09.009

Google Scholar

[26] V.M. Weiss , T. Naolou , G. Hause , J. Kuntsche , J. Kressler , K. Mäder Poly(glycerol adipate)-fatty acid esters as versatile nanocarriers: From nanocubes over ellipsoids to nanospheres. J Controlled Release 158: 156–164(2012).

DOI: 10.1016/j.jconrel.2011.09.077

Google Scholar

[27] V.M. Weiss , T. Naolou , E. Amado , K. Busse , K. Mäder , J. Kressler Formation of structured polygonal nanoparticles by phase-separated comb-like polymers. Macromol Rapid Commun 33: 35–40(2012).

DOI: 10.1002/marc.201100565

Google Scholar

[28] Y. Xia , X. Yin , N.A.D. Burke , H.D.H. Stöver Thermal Response of Narrow-Disperse Poly( N -isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules 38: 5937–5943(2005).

DOI: 10.1021/ma050261z

Google Scholar

[29] J.V.M. Weaver , I. Bannister , K.L. Robinson , X. Bories-Azeau , S.P. Armes , M. Smallridge, P. McKenna Stimulus-Responsive Water-Soluble Polymers Based on 2-Hydroxyethyl Methacrylate. Macromolecules 37: 2395–2403(2004).

DOI: 10.1021/ma0356358

Google Scholar

[30] J. A Opsteen , J.C. M Van Hest Modular synthesis of ABC type block copolymers by click, chemistry. J Polym Sci, Part A: Polym Chem 45: 2913–2924(2007).

DOI: 10.1002/pola.22047

Google Scholar

[31] P. Decuzzi , R. Pasqualini , W. Arap , M. Ferrari Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26: 235–243(2009).

DOI: 10.1007/s11095-008-9697-x

Google Scholar

[32] S. Kundu , A. Datta ., S. Hazra Growth of a collapsing Langmuir monolayer. Physical Review E 73: 1–7(2006).

DOI: 10.1103/physreve.73.051608

Google Scholar

[33] S. Kundu , A. Datta , S. Hazra Effect of metal ions on monolayer collapses. Langmuir 21: 5894–5900(2005).

DOI: 10.1021/la0505770

Google Scholar

[34] D. Vaknin , W. Bu , S.K. Satija , A. Travesset Ordering by collapse: formation of bilayer and trilayer crystals by folding Langmuir monolayers. Langmuir 23: 1888–1897(2007).

DOI: 10.1021/la062672u

Google Scholar

[35] H.M. McConnell Structures and Transitions in Lipid Monolayers at the Air-Water Interface. Annu Rev Phys Chem 42: 171–195(1991).

DOI: 10.1146/annurev.pc.42.100191.001131

Google Scholar

[36] P. Scholtysek , Z. Li , J. Kressler , A. Blume Interactions of DPPC with semitelechelic poly(glycerol methacrylate)s with perfluoroalkyl end groups. Langmuir 28: 15651–15662 (2012).

DOI: 10.1021/la3028226

Google Scholar