Thermal Properties and Crystallisation Behaviour of Thermoplastic Natural Rubber (TPNR) Nanocomposites

Article Preview

Abstract:

The effect of preparation technique on the crystallisation behavior and thermal properties of TPNR filled nanoclay nanocomposites was investigated. The nanocomposites were prepared via melt blending method using internal mixer (Haake 600P). Two types of nanocomposites preparation technique were employed which is method A and B. In method A, the nanoclay was pre-mixed with liquid natural rubber (LNR) before it was charged into the other materials. For method B, the nanoclay was directly charged into the molten TPNR matrix. The result shows, preparation methods were significantly affect the crystallinity and thermal properties of TPNR nanocomposites. DSC thermogram revealed that nanocomposites crystallinity was increased when prepared by method A but decreased with method B. An increment in polypropylene crystallinity was attributed by the nanoclay which is believed to be as a nucleating agent. DMA thermogram suggested that the preparation method has affected the storage modulus and tan δ but not the glass transition temperature (tg).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kaempfer, R. Thomann and R. Mulhaupt. Melt compounding of syndiotactic polypropylene nanocomposites containing organophilic layered silicates and in situ formed core/shell nanoparticles. Polymer. (2002) 43:2909–2916.

DOI: 10.1016/s0032-3861(02)00113-1

Google Scholar

[2] W.S. Chow, Z.A Ishak, J.K .Kocsis, A.A. Apostolov and U.S. Ishiaku. Compatibilizing effects of Maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer. (2003) 44:7427-7440.

DOI: 10.1016/j.polymer.2003.09.006

Google Scholar

[3] N. Hasegawa, M. Kawasumi, M.Kato, A. Usuki and A. Okada. Preparation and mechanical properties of PP-clay hybrids using a maleic anhydride-modified PP oligomer. J Appl Polym Sci. (1998) 67:87-92.

DOI: 10.1002/(sici)1097-4628(19980103)67:1<87::aid-app10>3.0.co;2-2

Google Scholar

[4] N. Hasegawa, H .Okamoto, M. Kato, & A .Usuki. Preparation and mechanical properties of polypropylene–clay hybrids based on modified polypropylene and organophilic clay. J Appl Polym Sci. (2000) 78:1918–1922.

DOI: 10.1002/1097-4628(20001209)78:11<1918::aid-app100>3.0.co;2-h

Google Scholar

[5] T. McNally, P. McShane, G.M. Nally, W.R. Murphy., M. Cook, A. Miller. Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polymer. (2002) 43:3785-3793.

DOI: 10.1016/s0032-3861(02)00170-2

Google Scholar

[6] M. Alexandra and P. Dubois. Polymer layered silicate nanocomposites: Preparation, properties and uses of new class of materials. Mater Sci Eng. (2000) 28:1-63.

Google Scholar

[7] A. Akelah, N. Salah El-Deen, Hiltner, A. Baer, A. Moet. Organophilic rubber-montmorillonite nanocomposites. Mater Lett. (1994) 22:97-102.

DOI: 10.1016/0167-577x(94)00167-7

Google Scholar

[8] N. Hasegawa, M. Kawasumi, M.Kato, A. Usuki, A. Okada. Preparation and mechanical properties of PP-clay hybrids using a maleic anhydride modified PP oligomer. J Appl Polym Sci. (1998) 67:87-92.

DOI: 10.1002/(sici)1097-4628(19980103)67:1<87::aid-app10>3.0.co;2-2

Google Scholar

[9] G. Galgali, C. Ramesh, and A. Lele. A rheological study on the kinetics of hybrid formation in propylene nanocomposites. Macromol. (2001) 34:852–858.

DOI: 10.1021/ma000565f

Google Scholar

[10] L.E Nielsen. Mechanical properties of polymer and composites. Marcel Dekker New York; 1981.

Google Scholar

[11] R. Seltzer P.M, Frontini, Y-W Mai. Effect of hygrothermal ageing on morphology and indentation modulus of injection moulded nylon 6/organoclay nanocomposites. Compos Sci Technol. (2009) 69:1093-1100.

DOI: 10.1016/j.compscitech.2009.01.029

Google Scholar

[12] S. Hambir, N. Bulakh, P. Kodgire, R. Kalgaonkar, and J.P Jog . PP/clay nanocomposites: a study of crystallisation and dynamic mechanical behavior. J Polym Sci B: Polym Phys. (2001) 39:446–450.

DOI: 10.1002/1099-0488(20010215)39:4<446::aid-polb1017>3.0.co;2-8

Google Scholar

[13] A. Oya, Y. Kurokawa, and H. Yasuda. Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci. (2000) 35:1045–1050.

Google Scholar

[14] M. Modesti, A. Lorenzetti, D. Bon, S. Besco. Thermal behaviour of compatibilised polypropylene nanocomposites: Effect of processing conditions. Polym Degrad Stabil 2005; 91:672-680.

DOI: 10.1016/j.polymdegradstab.2005.05.018

Google Scholar

[15] X. Liu and Q. Wu. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 2001; 42:10013-10019.

DOI: 10.1016/s0032-3861(01)00561-4

Google Scholar