[1]
F. D. Mestral, F. Thevenot, Ceramic composites: TiB2-TiC-SiC PartІ: properties and microstruc- ctures in the ternary system, J. Mater. Sci. 26 (20) (1991) 5547-5560.
DOI: 10.1007/bf02403957
Google Scholar
[2]
D. Vallauri, I. C. Atlas, A. Chrysanth-ou, TiC-TiB2 composites: a review of phase relationships, processing and properties, J. Eur. Ceram. Soc. 28 (8) (2008) 1697-1713.
DOI: 10.1016/j.jeurceramsoc.2007.11.011
Google Scholar
[3]
X. M. Min, T. Wang, Chemical bond and property of TiC-TiB2 composites, Mater. Sci. Forum 689 (64) (2011) 64-68.
Google Scholar
[4]
Z. M. Zhao, L. Zhang, W. Y. Liu, et al., Bulk ultrahard composites in the eutectic TiB2-TiC system by SHS under high gravity, Int. J. Self- Propag. High-Temp Synth. 18 (3) (2009) 186-193.
DOI: 10.3103/s1061386209030091
Google Scholar
[5]
J. Cabrero, J. Cabrero, F. Audubert, et al., Fabrication and characterization of sintered TiC–SiC composites, J. Eur. Ceram. Soc. 31 (3) (2011) 313-320.
DOI: 10.1016/j.jeurceramsoc.2010.10.010
Google Scholar
[6]
J. Ghosh, S. Mazumdar, M. Das, et al., Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling, Mater. Res. Bull. 43 (4) (2008) 1023-1031.
DOI: 10.1016/j.materresbull.2007.04.022
Google Scholar
[7]
D. V. Dudina, D. M. Hulbert,D. Jiang, et al., In situ boron carbide titanium diboride composites prepared by mechanical milling and subsequent sparking plasma sintering, J. Mater. Sci. 43 (10) (2008) 3569-3576.
DOI: 10.1007/s10853-008-2563-8
Google Scholar
[8]
H. Wang, W. Wu, S. Sun, et al., Characterization of the structure of TiB2/TiC nanocomposite powders fabricated by high-energy ball milling, Ceram. Int. 37 (7) (2011) 2689-2693.
DOI: 10.1016/j.ceramint.2011.04.014
Google Scholar
[9]
D. G. Zhu, X. D. Yin, C. Xiao, In situ synthesized TiB2-TiC-SiC ceramic composite, Xinan Jiaotong Daxue Xuebao 34 (1) (1999) 71-74.
Google Scholar
[10]
D. Bucevac, S. Boskovic, B. Matovic, et al, Toughening of SiC matrix with in-situ created TiB2 particles, Ceram. Int. 36 (7) (2010) 2181-2188.
DOI: 10.1016/j.ceramint.2010.06.001
Google Scholar
[11]
W. Wang, J. B. Lian, H. Q. Ru, Study on synthetic conditions of TiB2/SiC ceramic composite, J. Mater. Metall. 10 (1) (2011) 23-29.
Google Scholar
[12]
W. Wang, J. B. Lian, X. Y. Yue, et al, In-situ synthesized TiB2 toughened SiC microstructure and fracture toughness, Dongbei Daxue Xuebao, 32 (11) (2011) 1579-1581.
Google Scholar
[13]
J. Yang, L. M. Pan, W. Gu, et al, Microstructure and mechanical properties of in situ synthesized (TiB2+TiC)/Ti3SiC2 composites, Ceram. Int. 38 (1) (2012) 649-655.
DOI: 10.1016/j.ceramint.2011.06.066
Google Scholar
[14]
H. L. Sun, In-situ synthesis and oxidation behaviors of TiB2-TiCx composites, Southwest Jiaotong University, Chengdu , (2005).
Google Scholar
[15]
J. Jiang, D. G. Zhu, L. H. Wang, In situ synthesis of TiB2-TiCx ceramic matrix composite by hot iosostatic pressing, Journal of Southwest Jiaotong University 39 (1) (2004) 132-139.
Google Scholar
[16]
D. Brodkin, S. R. Kalidindi, M. W. Barsoum, et al., Microstructural evolution during transient plastic phase processing of titanium carbide-titanium boride composites, J. Am. Ceram Soc. 79 (7) (1996) 1945-(1952).
DOI: 10.1111/j.1151-2916.1996.tb08017.x
Google Scholar
[17]
H. L. Sun, D. G. Zhu, Microstructures of in-situ TiB2-TiCx multiphase ceramics, J. Ceram. 26 (3) (2005) 159-162.
Google Scholar
[18]
M. W. Barsoum, B. Houng, Transient plastic phase processing of titanium-boron-carbon composites, J. Am. Ceram. Soc. 76 (6) (1993): 1445-1451.
DOI: 10.1111/j.1151-2916.1993.tb03924.x
Google Scholar
[19]
J.L. Murray, P. K. Liao, K. E. Spear, The B-Ti(boron- titanium) system, BULLAPD 7 (6) (1986) 550-553.
Google Scholar
[20]
Y. C. Wang, Z. Y. Fu, Percolation model of TiB2 and BN multiphase ceramics, Acta Mater. 19(1) (2002) 49-53.
Google Scholar