[1]
K. S. GHOSH, N. GAO, Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al-Zn-Mg alloy, Trans. Nonferrous Met. Soc. China. 21(2011)1199-1209.
DOI: 10.1016/s1003-6326(11)60843-1
Google Scholar
[2]
Xu Fang, Yong Du, Min Song et al. Effects of Cu content on the precipitation process of Al–Zn–Mg alloys, J Mater Sci. 47(2012) 8174–8187.
DOI: 10.1007/s10853-012-6714-6
Google Scholar
[3]
Zhang Liang, Liu Xuesong, Wang Linsen et al, Fatigue crack initiation for Al-Zn-Mg alloy welded joint, Acta Metall. Sin. (Engl. Lett. ). 25(2012)235-240.
Google Scholar
[4]
S. Eslamian B.B. Sahari, Aidy Ali et al, Microscopic Study of 5083-H321 Aluminium Alloy Under Fretting Fatigue Condition, Materials Science and Engineering 17(2011)1-11.
DOI: 10.1088/1757-899x/17/1/012026
Google Scholar
[5]
Jiang Xiaosong, He Guoqiu, Liu Bing et al. Effect of Stress Amplitude on Fretting Fatigue Damage Behavior of Al-Zn-Mg Alloy, Rare Metal Materials and Engineering. 41(2012): 136-140.
Google Scholar
[6]
Rossino L S, Castro F C, Bose Fiho W W et al. Issues on the mean stress effect in fretting fatigue of a 7050-77451 Al alloy posed by new experimental data [J], Int J Fatigue. 31(2009)(2041).
DOI: 10.1016/j.ijfatigue.2008.12.011
Google Scholar
[7]
Frederic Menan , Gilbert Henaff, Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024, International Journal of Fatigue. 31 (2009)1684-1695.
DOI: 10.1016/j.ijfatigue.2009.02.033
Google Scholar
[8]
Yang Maosheng, The Effect of Fretting on Fatigue Lifetime of Aluminum Alloy LY12CZ, Tribology. 12(2012)272-277 (in Chinese).
Google Scholar
[9]
Longqiu Li, Izhak Etsion, Frank E. Talke, The effect of frequency on fretting in a micro-spherical contact, Wear. 270 (2011) 857–865.
DOI: 10.1016/j.wear.2011.02.014
Google Scholar
[10]
M. Buciumeanu, I. Crudu, L. Palaghian et al, Influence of wear damage on the fretting fatigue life prediction of an Al7175 alloy, International Journal of Fatigue. 31 (2009) 1278–1285.
DOI: 10.1016/j.ijfatigue.2009.02.032
Google Scholar
[11]
J. Vázquez, C. Navarro, J. Domínguez, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens, International Journal of Fatigue. 40 (2012) 143–153.
DOI: 10.1016/j.ijfatigue.2011.12.014
Google Scholar
[12]
T. Zhang, P.E. McHugh, S.B. Leen, Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue, International Journal of Fatigue. 44 (2012) 260–272.
DOI: 10.1016/j.ijfatigue.2012.04.011
Google Scholar
[13]
Murugesan Jayaprakash, Yukio Miyashita, Yoshiharu Mutoh. Fretting fatigue strength prediction of steels and Al alloys, International Symposium on Global Multidisciplinary Engineering. 2011 (S-GME2011)1-6.
DOI: 10.1088/1757-899x/21/1/012014
Google Scholar
[14]
Dong Lu,J.P. Celis,S. Kenzari,V. Fournee D.B. Zhou. Tribological behavior of aluminum matrix composites containing complex metallic alloys AlCuFeB or AlCuFeCr particles, Wear. 270 (2011) 528–534.
DOI: 10.1016/j.wear.2011.01.007
Google Scholar
[15]
Hu Leilei, Wu Baojie, Liu Zhichang. The Tribological Properties of Molybdenum Additivesin Lubricating Grease under Variable Frequency Conditions, Lubrication Engineering. 36(2011)72-74 (in Chinese).
Google Scholar
[16]
Lu Ping, Wang Ning, Tao Junlin et al. Influence Factors of Fretting Wear of Bolted Joints Structure Based on Acoustic Emission, Tribology. 30(2010)444-447 (in Chinese).
Google Scholar