[1]
T. Ishida A microstructural study of local melting of grey cast iron by a static plasma arc. Journal of Materials Science 20 (1985) 213-228
DOI: 10.1007/bf00555915
Google Scholar
[2]
G. Ciszewski, Bindung zwischen Auftragschicht und Grundwerkstoff beim Kaltschweißen von Gußeisen Theorie der Grafitsperrschicht, Schweißen und Schneiden. 38 (1986) 132-135.
Google Scholar
[3]
R.I. Hsieh, S.C. Wang, H.Y. Liou A study on the formation of liquation cracks in the weld heat-affected zone of HY-80 quenched and tempered steel, Journal of Materials Science 29 (1994) 2328-2334
DOI: 10.1007/bf00363422
Google Scholar
[4]
B.C. Meyer, H. Doyen, D. Emanowski, G. Tempus, T. Hirsch, and P. Mayr, Dispersoid-Free Zones in the Heat-Affected Zone of Aluminum Alloy Welds. Metallurgical And Materials Transactions A . 31 (2000) 1453- 1459
DOI: 10.1007/s11661-000-0263-3
Google Scholar
[5]
T. Zhu, Z. W. Chen, W. Gao, Microstructure Formation in Partially Melted Zone during Gas Tungsten Arc Welding of AZ91 Mg Cast Alloy, Materials Characterization 59 (2008) 1550 … 1558
DOI: 10.1016/j.matchar.2008.01.022
Google Scholar
[6]
Y. Luo, J. Liu Microstructural evolution in AZ91D magnesium alloy during electron beam welding, Vacuum 85 (2011) 1004…1010
DOI: 10.1016/j.vacuum.2011.02.009
Google Scholar
[7]
O.A. Ojo and M.C. Chaturvedi, Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy. Metallurgical and Materials Transactions A. 38A (2007) 356-369
DOI: 10.1007/s11661-006-9025-1
Google Scholar
[8]
K. Yamamoto, M. Hashimoto, N. Sasaguri and Y. Matsubara, Solidification of High Chromium Cast Iron Substituted by 25 to 70 mass%Ni for Fe, Materials Transactions, 50, (2009) 2253-2258
DOI: 10.2320/matertrans.f-m2009818
Google Scholar