Out-Coupling Efficiency Improvement in Organic Light-Emitting Diodes with Inverted Pyramid Glass Substrates

Article Preview

Abstract:

The external quantum efficiency of organic light-emitting diodes (OLEDs) was suppressed by the wave guide mode in the glass substrate and organic layers. In this paper, a mechanism is developed to simulate the optical luminous field for OLEDs based on inverted pyramid substrate structure. Monte Carlo method was used to optimize the structural parameters to enhance the external quantum efficiency of device by changing the substrate structure. A considerable enhancement in the extraction efficiency of the OLED is expected theoretically, and near 42% out-coupling efficiency was achieved in experiment without affecting the electroluminescent spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-147

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

Google Scholar

[2] J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).

Google Scholar

[3] Feng Li, Xiao Li, Junhu Zhang, Bai Yang, Org. Electron. 8, 635 (2007).

Google Scholar

[4] Z. B. Wang, M. G. Helander, X. F. Xu, D. P. Puzzo, J. Qiu, M. T. Greiner, and Z. H. Lu, J. Appl. Phys. 109, 053107 (2011).

Google Scholar

[5] Yiru Sun and Stephen R. Forrest, Nature Photon. 2, 483 (2008).

Google Scholar

[6] Ji-Hyang Jang, Min-Cheol Oh, Tae-Hoon Yoon, and Jae Chang Kim, Appl. Phys. Lett. 97, 123302 (2010).

Google Scholar

[7] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu1, Nature Photon. 5, 753 (2011).

Google Scholar

[8] Yu-Hung Cheng, Jia-Lin Wu, Chien-Hong Cheng, Kao-Chih Syao, and Ming-Chang M. Lee, Appl. Phys. Lett. 90, 091102 (2007).

Google Scholar

[9] G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, M.E. Thompson, Opt. Lett. 22, 396 (1997).

Google Scholar

[10] Sang-Hwan Cho, Young-Woo Song, Joon-gu Lee, Yoon-Chang Kim, Jong Hyuk Lee, Jaeheung Ha, Jong-Suk Oh, So Young Lee, Sun Young Lee, Kyu Hwan Hwang, Dong-Sik Zang and Yong-Hee Lee, Opt. Express. 16, 12637 (2008).

DOI: 10.1109/ivmc.2003.1222972

Google Scholar

[11] C. S. Kim, M. Kim, D. C. Larrabee, I. Vurgaftman, J. R. Meyer, S. H. Lee, and Z. H. Kafafi, J. Appl. Phys. 106, 113105 (2009).

Google Scholar

[12] Soon Moon Jeong, Fumito Araoka, Yoshimi Machida, Ken Ishikawa, Hideo Takezoe, Suzushi Nishimura, and Goro Suzaki, Appl. Phys. Lett. 92, 083307 (2008).

DOI: 10.1063/1.2839897

Google Scholar

[13] Yiru Sun and Stephen R. Forrest. J. Appl. Phys. 100, 073106 (2006).

Google Scholar

[14] Jin Yeong Kim and Kyung Cheol Choi. J. Dis. Tech. 7, 377 (2011).

Google Scholar

[15] Young Rag Do, Yoon-Chang Kim and Young-Woo Song, J. Appl. Phys, 96, 7629 (2004).

Google Scholar

[16] Kuan-Yu Chen, Yung-Ting Chang, Yu-Hsuan Ho, Hoang-Yan Lin, Jiun-Haw Lee, and Mao-Kuo Wei, Opt. Express. 18, 3238 (2010).

DOI: 10.1109/jdt.2010.2104134

Google Scholar

[17] Michael Slootsky and Stephen R. Forrest1, Appl. Phys. Lett. 94, 163302 (2009).

Google Scholar