Light Emission Induced by the Indium Distribution in InGaN Nanowires

Article Preview

Abstract:

The InGaN nanowires (NWs) have attracted intense attention for their huge potential in applications such as light emitting diodes, laser diodes and solar cells. Although lots of work are focused on improving their optical performance, little is known about the influence of the In distribution and the surface states on the microscopic light emission mechanism. In order to give an atomic level understanding, we investigate the electronic structures of the wurtziteGa-rich InGaN NWs with different In distributions using first-principles calculations. We find that the In-atoms are apt to distribute on the surface of the NWs and the short surface In-N chains can be easily formed. For the unsaturated NWs, several new bands are induced by the surface states, which can be modified by the surface In microstructures. The randomly formed surface In-N chains can highly localize the electrons/holes at the band edges and dominate the interband optical transition. For the saturated NWs, the band edges are determined by the inner atoms. Our work is useful to improve the performance of the InGaN NW-based optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-153

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han and T. Sota: Nat. Mater. Vol. 5 (2006).

DOI: 10.1038/nmat1726

Google Scholar

[2] A. Kaneta, M. Funato and Y. Kawakami: Phys. Rev. B Vol. 78 (2008), p.125317.

Google Scholar

[3] D.V.P. McLaughlin and J.M. Pearce: Metall. Mater. Trans. A Vol. 44A (2013), p. (1947).

Google Scholar

[4] J. -J. Shi and Z. -Z. Gan: J. Appl. Phys. Vol. 94 (2003), p.407.

Google Scholar

[5] C.J. Humphreys: Philos. Mag. Vol. 87 (2007), p. (1971).

Google Scholar

[6] J. -J. Shi, S. Zhang, M. Yang, S. -G. Zhu and M. Zhang: Acta Mater. Vol. 59 (2011), p.2773.

Google Scholar

[7] S.D. Hersee, A.K. Rishinaramangalam, M.N. Fairchild, L. Zhang and P. Varangis: J. Mater. Res. Vol. 26 (2011), p.2293.

Google Scholar

[8] A. Armstrong, Q. Li, Y. Lin, A.A. Talin and G.T. Wang: Appl. Phys. Lett. Vol. 96 (2010), p.163106.

Google Scholar

[9] T. Kuykendall, P. Ulrich, S. Aloni and P. Yang: Nat. Mater. Vol. 6 (2007), p.951.

Google Scholar

[10] W. Guo, M. Zhang, A. Banerjee and P. Bhattacharya: Nano Lett. Vol. 10 (2010), p.3355.

Google Scholar

[11] K. Cui, S. Fathololoumi, M.G. Kibria, G.A. Botton and Z.T. Mi: Nanotechnology Vol. 23 (2012), p.085205.

Google Scholar

[12] G. Tourbot, C. Bougerol, A. Grenier, M.D. Hertog, D. Sam-Giao, D. Cooper, P. Gilet, B. Gayral and B. Daudin: Nanotechnology Vol. 22 (2011), p.075601.

DOI: 10.1088/0957-4484/22/7/075601

Google Scholar

[13] Y. Huang, X.F. Duan, Y. Cui and C.M. Lieber: Nano Lett. Vol. 2 (2002), p.101.

Google Scholar

[14] C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin and T.H. Hsueh: Nanotechnology Vol. 18 (2007), p.445201.

DOI: 10.1088/0957-4484/18/44/445201

Google Scholar

[15] J.J. Wierer, Q.M. Li, D.D. Koleske, S.R. Lee and G.T. Wang: Nanotechnology Vol. 23 (2012), p.194007.

Google Scholar

[16] D.J. Carter, J.D. Gale, B. Delley and C. Stampfl: Phys. Rev. B Vol. 77 (2008), p.115349.

Google Scholar

[17] Z.G. Wang, S.J. Wang, J.B. Li, F. Gao and W.J. Weber: J. Phys. Chem. C Vol. 113 (2009), p.19281.

Google Scholar

[18] S.K. Lim, S. Crawford, G. Haberfehlner and S. Gradecak: Nano Lett. Vol. 13 (2013), p.331.

Google Scholar

[19] M.X. Xiao, M. Zhao and Q. Jiang: J. Appl. Phys. Vol. 110 (2011), p.054308.

Google Scholar

[20] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. Sanchez-Portal: J. Phys.: Condens. Mater. Vol. 14 (2002), p.2745.

Google Scholar

[21] B. Delley: J. Chem. Phys. Vol. 113 (2000), p.7756.

Google Scholar

[22] C.G. Van de Walle and J. Neugebauer: J. Appl. Phys. Vol. 95 (2004), p.3851.

Google Scholar