Numerical Demonstrations of Negative Refraction Properties in a Closed-Ring Pair Metamaterial under Parallel Incidence

Article Preview

Abstract:

In this paper, we investigate numerically the negative refraction properties of a closed-ring pair (CRP) structure metamaterial under parallel incidence. The surface currents and magnetic-field distribution are demonstrated to the physical mechanism of the negative refraction of the CRP. It is found that the electric response is attributed to the plasma oscillation of electrons and resulting in negative permittvity. However, the magnetic response origins from the antsymmetric resonant mode, which is excited by the edges of up and down of the CRP structure. In addition, the electric field distribution based on wedge-shaped and parallelogram-shaped models and the backward wave propagation from the phase changes in the moving picture are shown to further confirm the negative refraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-125

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. G. Veselago, Sov. Phys. Usp. 10 (1968) 509.

Google Scholar

[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84 (2000) 4184.

Google Scholar

[3] N. Fang, H. Lee, C. Sun, and X. Zhang. Science 308 (2005) 5721.

Google Scholar

[4] T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, Opt. Express 16 (2008) 13579.

Google Scholar

[5] H. S. Chen, L.X. Ran, F.J.T. Huang, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Appl. Phys. Lett. 86 (2005) 151909.

Google Scholar

[6] J. H. Lv, X.W. Hu, M.H. Liu, B. R. Yan, L.H. Kong, J. Opt. A, Pure Appl. Opt. 11, 085101 (2009).

Google Scholar

[7] X. Zhou, X. P. Zhao, Appl. Phys. Lett. 91 (2007) 181908.

Google Scholar

[8] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, Phys. Rev. E 70 (2004) 057605.

Google Scholar

[9] G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, Opt. lett. 30 (2005) 3198.

DOI: 10.1364/ol.30.003198

Google Scholar

[10] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev, Science 330 (2010) 1510.

DOI: 10.1126/science.1197172

Google Scholar

[11] M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, Phys. Rev. B 75 (2007) 235114.

DOI: 10.1103/physrevb.75.235114

Google Scholar

[12] J. H. Lv, B. R. Yan, M. H. Liu, and X. W. Hu. Phys. Rev. E 80 (2009) 026605.

Google Scholar

[13] J. F. Wang, S. B. Qu, Z. Xu, J. Q. Zhang, H. Ma, Y. M. Yang, and C. Gu. Photon. Nanostruct. Fundam. Appl. 7 (2009) 108.

Google Scholar

[14] J. Q. Gu, J. G. Han, X. C. Lu, R. Singh, Z. Tian, Q. R. Xing, and W. L. Zhang. Optics Express 17, (2009) 20307.

Google Scholar

[15] Hao, Z., M. C. Martin, B. Harteneck, S. Cabrini, and E. H. Anderson. Appl. Phys. Lett. 91(2007) 253119.

Google Scholar

[16] P. Ding, E. J. Liang, L. Zhang, Q. Zhou, and Y. X. Yuan. Phys. Rev. E 79 (2009) 016604.

Google Scholar

[17] Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, Appl. Phys. Lett. 92(2008) 064101.

Google Scholar

[18] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic. Nature. 438 (2005) 335.

DOI: 10.1038/nature04242

Google Scholar

[19] N. T. Tung, V. D. Lam, J. W. Park, M. H. Cho, Y. P. Lee, J. Y. Rhee, and W. H. Jang, J. Appl. Phys. 106 (2009) 053109.

Google Scholar

[20] N. T. Tung, V. T. T. Thuy, J. W. Park, J. Y. Rhee, and Y. R. Lee, J. Appl. Phys. 107 (2010)023530.

Google Scholar

[21] Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, W. Cao, Phys. Rev. E 72 (2005) 016607.

Google Scholar

[22] L. X. Ran, J. Huang Fu, H. S. Chen, X. M. Zhang, K. S. Chen, J. Appl. Phys. 95 (2004) 2238.

Google Scholar