The Influence of Sodium Chloride on the Resulting AAO Film Thickness

Article Preview

Abstract:

The contribution examines the effects of the electrolyte chemical composition on the resulting AAO layer thickness, which is one of the main indicators of corrosion protection of aluminium parts and which also favourably affects mechanical properties of component surfaces. For comparison purposes, there were selected the electrolytes comprising sulphuric acid, oxalic acid, boric acid and sodium chloride. Anodizing time for all specimens was 210.00 minutes. At the same time, equal electrolyte temperature 22.00°C ± 13.64% as well as equal magnitude of the applied voltage 12.00 V ± 4.17% were determined for all specimens. The results obtained lead to the assumption that it is possible to replace conventional electrolytes by those that are more environmentally friendly, reduce the costs of their disposal and allow obtaining oxide layers of the same thickness. The admixture of sodium chloride plays here the crucial role and its effect on the thickness of the formed oxide layer has not been published yet in any study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 816-817)

Pages:

18-22

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Rahimi, S. Saramad, S. H. Tabaian, S. P. Marashi, A. Zolfaghari, M. Mohammadalinezhad, Appl. Surf. Sci. 256 (2009) 12–16.

DOI: 10.1016/j.apsusc.2009.04.155

Google Scholar

[2] I. Tsangaraki-Kaplanogloua, S. Theohari, T. Dimogerontakis, N. Kallithrakas-Kontos, Y. M. Wang, H. H. (Harry) Kuo, SheilaKia, Surf. Coat. Technol. 200 (2006) 3969 – 3979.

DOI: 10.1016/j.surfcoat.2005.02.174

Google Scholar

[3] D. Djozan, M. Amir-Zehni, Surf. Coat. Technol. 173 (2003) 185–191.

Google Scholar

[4] V. Balasubramanian, S. John, B. A. Shenoi, Surf. Technol. 19 (1983) 293 – 303.

Google Scholar

[5] E. Harscoet, D. Froelich, Journal of Clean Product. 16 (2008) 1294-1305.

Google Scholar

[6] T. Dimogerontakis, I. Tsangaraki-Kaplanoglou, Thin Solid Films. 402 (2002) 121–125.

DOI: 10.1016/s0040-6090(01)01622-4

Google Scholar

[7] I. Tsangaraki-Kaplanogloua, S. Theohari, T. Dimogerontakis, N. Kallithrakas-Kontos, Y. M. Wang, H. H. (Harry) Kuo, SheilaKia, Surf. Coat. Technol. 200 (2006) 2634-2641.

DOI: 10.1016/j.surfcoat.2005.02.174

Google Scholar

[8] G. Patermarakis, J. Electroanal. Chem. 447 (1998) 25–41.

Google Scholar

[9] T. Aerts, I. DeGraeve, G. Nelissen, J. Deconinck, S. Kubacki, E. Dick, H. Terryn, Corros. Sci. 51 (2009) 1482–1489.

Google Scholar

[10] T. Aerts, J. -B. Jorcin, I. DeGraeve, H. Terryn, Electrochim. Acta 55 (2010) 3957–3965.

Google Scholar

[11] T. Aerts, T. Dimogerontakis, I. D. Graeve, J. Fransaer , H. Terryn, Surf. Coat. Technol. 201 (2007) 7310–7317.

Google Scholar

[12] S. Sopok, Journal of Chromatography A, 739 (1996) 163-166.

Google Scholar

[13] I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, Appl. Surf. Sci. 236 (2004) 270–277.

Google Scholar

[14] I. Vrublevsky , V. Parkoun , V. Sokol , J. Schreckenbach, Appl. Surf. Sci. 252 (2005) 227–233.

Google Scholar

[15] M. Badida, M. Majernik, D. Sebo, J. Hodolic, Engineering and Production Environment, Vienala, Kosice, (2001).

Google Scholar

[16] J. Muransky, M. Badida, B. Hricova, Ecodesign in Engineering, Elfa, Kosice, (2011).

Google Scholar