Influence of Al2O3 as Filler Loading on the Fracture Toughness of Light-Cured Dental Resin Composites

Article Preview

Abstract:

The purpose of the present study was to evaluate the effect of filler loading on the fracture toughness of light-cured dental resin composites (DRCs). The monomer Bis-GMA and TEGDMA (75/25 wt/wt) were mixed with treated micro-sized aluminum oxide (Al2O3) particles ranging from 40-60 wt% as filler. The composite samples were cured with LED for 80s. The bulk density (g/cm3) and apparent porosity (%) of the samples were determined according to the ASTM standard. The fracture toughness (KIC) values of the composites were determined using a single edge notched specimen in the three-point bending test. There was a significant difference in KIC of the composites with different loading of Al2O3 particles (p < 0.05). The highest amount of filler (60 wt%) reduced the KIC value to 1.5 MPa.m1/2. As a conclusion, the Al2O3 particles used as filler loading does have an effect on the mechanical properties of DRCs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 816-817)

Pages:

227-231

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Jan, B. Lee, C. Lin, and W. Tseng: J. Formos. Med. Assoc. Vol. (2012), pp.1-7.

Google Scholar

[2] Q. Chen, Y. Zhao, W. Wu, T. Xu, and H. Fong: Dent. Mater. Vol. 28 (2012), pp.1071-1079.

Google Scholar

[3] K.H. Kim, J.L. Ong, and O. Okuno: J. prost. dent. Vol. 87 (2002), pp.642-649.

Google Scholar

[4] I. Sideridou, V. Tserki, and G. Papanastasiou: J. Biomat. Vol. 23 (2002), pp.1819-1829.

Google Scholar

[5] N. Opdam, B. Loomans, F. Roeters, and E. Bronkhorst: J. Dent. Vol. 32 (2004), pp.379-383.

Google Scholar

[6] J. Manhart, H. Chen, G. Hamm, and R. Hickel: Oper. Dent. Vol. 29 (2004), p.481.

Google Scholar

[7] J. Manhart, H. Chen, G. Hamm, and R. Hickel: Oper. Dent. Vol. 29 (2004), pp.481-508.

Google Scholar

[8] J.L. Ferracane: Dent. Mater. Vol. 27 (2011), pp.29-38.

Google Scholar

[9] M.M. Karabela and I.D. Sideridou: Dent. Mater. Vol. 24 (2008), pp.1631-1639.

Google Scholar

[10] M. Atai, M. Nekoomanesh, S. Hashemi, and S. Amani: Dent. Mater. Vol. 20 (2004), pp.663-668.

Google Scholar

[11] A.O. Alhareb and Z.A. Ahmad: Adv. Mater. Res. Vol. 173 (2011), pp.18-23.

Google Scholar

[12] S. Zhang, X. Cao, Y. Ma, Y. Ke, J. Zhang, and F. Wang: Express. Polym. Lett. Vol. 5 (2011), p.581–590.

Google Scholar

[13] M. Kobayashi, S. Shinzato, K. Kawanabe, M. Neo, M. Matsushita, T. Kokubo, T. Kikutani, and T. Nakamura: J. Biomed. Mater. Res. Vol. 49 (2000), pp.319-327.

DOI: 10.1002/(sici)1097-4636(20000305)49:3<319::aid-jbm4>3.0.co;2-r

Google Scholar

[14] K. Lim, Z. Ishak, U. Ishiaku, A. Fuad, A. Yusof, T. Czigany, B. Pukanzsky, and D. Ogunniyi: J. Appl. Polym. Sci. Vol. 100 (2006), pp.3931-3942.

DOI: 10.1002/app.22866

Google Scholar

[15] F.O. Azlin, J. Banjuraizah, F.A. Nuzul, M.A. Asliza, and O. Amirro. in 1st international coferance on sustainable materials ICoSM (2007).

Google Scholar

[16] N. Elshereksi, S. Mohamed, A. Arifin, and Z.A.M. Ishak: J. Phys. Sci. Vol. 20 (2009), pp.1-12.

Google Scholar

[17] W.S. Chow, H.K. Tay, A. Azlan, and Z. Mohd Ishak. in Proceedings of the Polymer Processing Society 24th Annual Meeting ~ PPS-24 ~ June 15-19 (2008).

Google Scholar

[18] A. Fujishima and J.L. Ferracane: Dent. Mater. Vol. 12 (1996), pp.38-43.

Google Scholar

[19] D. Zhao, J. Botsis, and J.L. Drummond: Dent. Mater. Vol. 13 (1997), pp.198-207.

Google Scholar

[20] J.B. Wachtman, W.R. Cannon, and M.J. Matthewson: Mechanical properties of ceramics, John Wiley & Sons Inc (2009).

Google Scholar

[21] F.P. Beer, E.R. Johnston, J.T. Dewolf, and D.F. Mazurek: Mechanics of Materials, McGraw Hill, NY (2009).

Google Scholar

[22] W. Johnson, V. Dhuru, and W. Brantley: Dent. Mater. Vol. 9 (1993), pp.95-98.

Google Scholar