Investigation of Composition-Properties’ Relations on Silicon and Carbon Based Nanomaterials

Article Preview

Abstract:

Multicomponent thin films (binary-SiC and ternary-SiCAl) as well as single thin films (silicon Si) were deposited using Thermionic Vacuum Arc (TVA) technology. The thin films were characterized using X-ray diffractometer (XRD, Philips PW1050, Cu K), scanning electron microscope (SEM, Zeiss EVO 50 SEM) accompanied with energy dispersive spectrometer and transmission electron microscope (TEM, Phillips CM 120 ST, 100 kV). The film is composed of nanoparticles very smoothly distributed of 15-30 nanometer size embedded in amorphous matrix film. The results reveal high hardness for SiC (10-40 GPa) and for SiCAl: low wear rate (6.16E-05 mm3/Nm).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 816-817)

Pages:

232-236

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Zhang, B. K. Tay, C. Q. Sun, S. P. Lau, J Vac Sci Technol A, 20 (2002) 1390–1394.

Google Scholar

[2] Y. Pauleau, F. Thiery, Surf Coat Technol, 180–181 (2004) 313–322.

Google Scholar

[3] C. S. Lee, K. R. Lee, K. Y. Eun, K. H. Yoon, J. H. Han, Diamond Relat Mater, 119 (2002) 198–203.

Google Scholar

[4] C. P. Lungu, I. Mustata, G. Musa, A. M. Lungu, O. Brinza, C. Moldovan, C. Rotaru, R. Iosub, F. Sava, M. Popescu, R. Vladoiu, V. Ciupina, G. Prodan, N. Apetroaei, J Optoelectron Adv M, 8 (2006) 74-77.

Google Scholar

[5] A. Y. Wang, K. R. Lee, J. P. Ahn, J. H. Han, Carbon, 44 (2006) 1826.

Google Scholar

[6] S. Zhang, X. L. Bui, Y. Q. Fu, Thin Solid Films, 467, (2004), 261.

Google Scholar

[7] C. Corbella, et al., Surf. Coat. Technol., 409 (2004) 177-178.

Google Scholar

[8] X. Pang, L. Shi, P. Wang, Y. Xia, W. Li, Surf. Interface Anal. 41 (2009) 924–930.

Google Scholar

[9] H. W. Choi, J. H. Choi, K. R. Lee, J. P. Ahn, K. H. oh, Thin Solid Films, 516 (2007) 248-251.

Google Scholar

[10] J. M. Zhu, H. M. Fu, H. F. Zhang, A. M. Wang, H. Li, Z. Q. Hu, Materials Science and Engineering A, 527 (2010) 7210–7214.

Google Scholar

[11] G. Musa, I. Mustata, V. Ciupina, R. Vlădoiu, G. Prodan, E. Vasile, H. Ehrich, Diamond and Related Materials, 13 (2004) 1398-1401.

DOI: 10.1016/j.diamond.2003.10.048

Google Scholar

[12] R. Vladoiu, A. Mandes, V. Dinca, M. Contulov, V. Ciupina, C. P. Lungu, G. Musa, New Industrial Plasma Technology, Wiley-VCH, 2009, 357−365.

DOI: 10.1002/9783527629749.ch29

Google Scholar

[13] R. Vladoiu, V. Ciupina, M. Contulov, A. Mandes, V. Dinca, G. Prodan, C. P. Lungu, J Optoelectron Adv M, 12 (2010) 553-556.

DOI: 10.1002/ctpp.201010157

Google Scholar

[14] V. Ciupina, R. Vladoiu, C. Lungu, V. Dinca, M. Contulov, A. Mandes, P. Popov, G. Prodan, Eur. Phys. J. D, 66 (2012).

DOI: 10.1140/epjd/e2012-20470-5

Google Scholar

[15] V. Ciupina, R. Vladoiu, A. Mandes, G. Musa, C. P. Lungu, J Optoelectron Adv M, 10 (2008) 2958-2962.

Google Scholar

[16] Information on http: www. cristalography. org.

Google Scholar