[1]
G. Bartarya, S.K. Choudhury: State of the art in hard turning, International Journal of Machine Tools and Manufacture, 53, 2012, pp.1-14.
DOI: 10.1016/j.ijmachtools.2011.08.019
Google Scholar
[2]
A. Kurt, U. Seker: he effect of chamfer angle of polycrystalline cubic boron nitride cutting tool on the cutting forces and the tool stresses in finishing hard turning of AISI 52100 steel, Materials and Design, 26, 2005, pp.351-356.
DOI: 10.1016/j.matdes.2004.06.022
Google Scholar
[3]
Y. Karpat, T. Özel: 3-D FEA of Hard Turning: Investigation of PCBN Cutting Tool Micro Geomtry Effects, Transactions of NAMRI/SME, Vol. 35, 2007, pp.1-8.
Google Scholar
[4]
Y.K. Chou, H. Song, Tool nose radius effects on finish hard turning, Journal of Materials Processing Technology, 148, 2004, pp.259-268.
DOI: 10.1016/j.jmatprotec.2003.10.029
Google Scholar
[5]
GJ Chen, XL Liu, ZY Zhao, SY Ji, KQ Li, Adiabatic Shear Behavior and Chip Morphology in Precision Hard Cutting GCr15 Steel, Solid State Phenomena Vol. 175 (2011), pp.269-273.
DOI: 10.4028/www.scientific.net/ssp.175.269
Google Scholar
[6]
Y.B. Guo, D.W. Yen, A FEM study on mechanisms of dicontinuous chip formation in hard machining, Journal of Materials Processing Technology 155-156 (2004), pp.1350-1356.
DOI: 10.1016/j.jmatprotec.2004.04.210
Google Scholar
[7]
J. Hua, R. Shivpuri, Prediciton of chip morphology and segmentation during the machining of titanium alloys, Journal of Materials processing Technology, 150 (2004), pp.124-133.
DOI: 10.1016/j.jmatprotec.2004.01.028
Google Scholar
[8]
R. Komanduri, Z.B. Hou, On thermoplastic shear instability in the machining of titanium alloy (Ti-6Al-4V), Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 33 (9), 2002, pp.2995-3010.
DOI: 10.1007/s11661-002-0284-1
Google Scholar
[9]
C.Z. Duan, T. Dou, Y.J. Cai, Y.Y. Li: Finite Element Simulation and Experiment of Chip Formation Process during High Speed Machining of AISI 1045 Hardened Steel, International Journal of Recent Trends in Engineering, Vol 1, No. 5, pp.47-50.
DOI: 10.1109/iccet.2010.5486196
Google Scholar
[10]
A. Attanasio, E. Ceretti, S. Tizzuti, D. Umbrello, F. Micari, 3D finite element analysis of tool wear in machining, CIRP annals – Manufacturing Technology Vol. 57, Issue 1, 2008, pp.61-64.
DOI: 10.1016/j.cirp.2008.03.123
Google Scholar
[11]
K.S. Woon, M. Rahman, F.Z. Fang, K.S. Neo, K. Liu, Investigations of tool edge radius effect in micromachining: A FEM simulation approach, Journal of Materials Processing Technology, Vol. 195, Issues 1-3, 2008, pp.204-211.
DOI: 10.1016/j.jmatprotec.2007.04.137
Google Scholar
[12]
G. Szabó, J. Kundrák, Numerical research of the plastic strain in hard turning in case of of orthogonal cutting, Key Engineering Materials Vol. 496, 2012, pp.162-167.
DOI: 10.4028/www.scientific.net/kem.496.162
Google Scholar
[13]
A. Maurel, M. Fontaine, S. Thibaud, G. Michel, J.C. Gelin, Experiments and FEM Simulations of Milling Performed to Identify Material Parameters, International Journal of Material Forming, Vol. 1, Issue 1, 2008, pp.1435-1438.
DOI: 10.1007/s12289-008-0106-0
Google Scholar
[14]
M.C. Shaw, A. Vyas, Chip formation in the machining of hardened steel, CIRP 42 (1) (1993), pp.29-33.
DOI: 10.1016/s0007-8506(07)62385-3
Google Scholar
[15]
K. Nakayama, M. Arai, T. Kanda, Machining characteristics of hard materials, CIRP 37 (1) (1988), pp.89-92.
DOI: 10.1016/s0007-8506(07)61592-3
Google Scholar
[16]
R. Recht, Catastrophic thermoplastic shear, Journal of Applied Mechanics (1964) 31., pp.189-193.
Google Scholar
[17]
G. Poulachon, A. Moisan, Hard Turning: Cutting mechanisms and metallurgical aspects, Trans. ASME Journal of Manufacturing Science and Engineering, (2000) Vol. 122, No. 3, pp.406-412.
DOI: 10.1115/1.1285891
Google Scholar
[18]
Information on www. tatasteelnz. com.
Google Scholar
[19]
P.L.B. Oxley, Mechanics of Machining, An Analytical Approach to Assessing Machinability, Halsted Press, New York, (1989).
Google Scholar