[1]
I. Alibas, Microwave, air and combined microwave–air-drying parameters of pumpkin slices, Uludag University, Faculty of Agriculture, Department of Agricultural Machinery, Bursa, Turkey, 2007, pp.1445-1452.
DOI: 10.1016/j.lwt.2006.09.002
Google Scholar
[2]
C.P. Brennand, Home Drying of Food, Cooperative Extension Service, Utah State University, Logan, Utah, USA, (1994).
Google Scholar
[3]
V.P.A. Are, E.X. Fernanda, Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage, J. Food Eng. 76(4) (2006) 562-567.
DOI: 10.1016/j.jfoodeng.2005.06.003
Google Scholar
[4]
A. O'Dell, Home drying of fruit and vegetable. Extension Service. West Virginia University, Virginia, (1999).
Google Scholar
[5]
L. Mayor, R. Moreira, F. Chenlo, M.A. Sereno, Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions, J. Food Eng. 74(2) (2006) 253-262.
DOI: 10.1016/j.jfoodeng.2005.03.003
Google Scholar
[6]
S. Awole, W. Kebede, T.S. Workneh, Postharvest quality and shelf life of some hot pepper varieties, J. Food Sci. Technol. 2011, DOI 10. 1007/s13197-011-0405-1.
DOI: 10.1007/s13197-011-0405-1
Google Scholar
[7]
M. Tigist, T.S. Workneh, K. Woldetsadik, Effects of Variety on the Quality of Tomato Stored under Ambient Conditions. J. Food Sci. Technol. 2011, DOI: 10. 1007/s13197-011-0378-0.
DOI: 10.1007/s13197-011-0378-0
Google Scholar
[8]
T.S. Workneh, G. Osthoff, M.S. Steyn, Effects of preharvest treatment, disinfections and storage environment on quality of tomato. J. Food Sci. Technol. 2011, DOI: 10. 1007/s13197-011-0391-3.
DOI: 10.1007/s13197-011-0391-3
Google Scholar
[9]
J. Dahlman , C. Forst, Solar dehydrator, drying fruits and vegetables, University of Georgia extension bulletin, (2011).
Google Scholar
[10]
M.C. Nunes, J.P. Emond, Chlorinated water treatments affects post harvest quality of green bell peppers, J. Food Qual. 22 (1999) 353-361.
DOI: 10.1111/j.1745-4557.1999.tb00563.x
Google Scholar
[11]
K.A. Gomez, A.A. Gomez, Statistical Procedures for Agricultural Research, John Willey and Sons, New York, (1984).
Google Scholar
[12]
D.B. Duncan, New multiple range and multiple F tests, Biometrics, (1955).
Google Scholar
[13]
S. Rahman, J. Lamb, Air drying behavior of fresh and osmotically dehydrated pineapple. J. Food Process Eng. 14 (1991) 163-171.
DOI: 10.1111/j.1745-4530.1991.tb00088.x
Google Scholar
[14]
P. Rajkumar, Comparative performance of solar cabinet, vacuum assisted solar and open sun drying methods, Department of Bioresources Engineering Mcgill University, Montreal, Department of Bioresource Engineering McGill University, Montreal, Canada, (2007).
DOI: 10.55920/2771-019x/1063
Google Scholar
[15]
E. Tsotsas, A.S. Mujumdar, Modern Drying Technology, Energy Savings, Volume 4, Wiley-VCH Verlag GmbH and Co. KGaA, (2012).
DOI: 10.1080/07373937.2014.976429
Google Scholar
[16]
D.M.G. Mcbean, A.A. Johnson, J.I. Pitt, The absorption of sulfur dioxide by fruit tissue, J. Food Sci. 29 (1964) 257–60.
DOI: 10.1111/j.1365-2621.1964.tb01728.x
Google Scholar
[17]
W. Eissen, W. Muhlbauer, H.D. Kutzbach, Solar drying of grapes, Drying Technol. 3(1) (1985a) 63-74.
DOI: 10.1080/07373938508916255
Google Scholar
[18]
C.W. Culpepper, H.H. Moon, Differences in the composition of the fruits of Cucurbita varieties at different ages in relation to culinary use, J. Agric. Res. 71 (1945) 111-136.
Google Scholar
[19]
M. Murakami, J.M. Himoto, K.I. Natsuga, Analysis of pumpkin quality by near infrared reflectance spectroscopy, Department of Agricultural Engineering, faculty of agriculture, Hokkaido University, Sapporo, (1992).
Google Scholar
[20]
A.L. Daniel, J.K. Brecht, C.A. Sims, D.N. Maynard, Sensory analysis of bush and vining types of tropical pumpkin, Proc. Fla. State Hort. Soc. 108 (1995) 312-316.
Google Scholar
[21]
W.J. Harvey, D.G. Grant, J.P. Lammerink, Physical and sensory changes during development and storage of Buttercup squash. NewZeal J. Crop and HortSci. 25 (1997) 341-351.
DOI: 10.1080/01140671.1997.9514025
Google Scholar
[22]
V.T. Karathanos, A.E. Kostrapoulos, G.D. Saravacos, Air drying of somatically dehydrated fruits, Drying Technol. 13(5-7) (1995) 1503-1521.
DOI: 10.1080/07373939508917036
Google Scholar
[23]
A. Lenart, Osmo-convective drying of fruits and vegetables: technology and application, Drying Technol. 14(2) (1996) 391- 413.
DOI: 10.1080/07373939608917104
Google Scholar
[24]
S. Simal, E. Deya, M. Frau, C. Rossello, Simple modeling of air drying curves of fresh and somatically pre-dehydrated apple cubes, J. Food Eng. 33 (1997) 139-150.
DOI: 10.1016/s0260-8774(97)00049-6
Google Scholar
[25]
R. Sakiyama, A. Stevens, Organic acid accumulation in attached and detached tomato fruits, J. Amer. Soc. Hort. Sci. 101 (1976) 394-396.
DOI: 10.21273/jashs.101.4.394
Google Scholar
[26]
Sudhakar, P.S. Jagdish, A.K. Upadhyay, D. Ram, R. Mathura, Ascorbate and Carotenoid Content in an Indian Collection of Pumpkin (Cucurbita moschata Duch. ex Poir), Cucurbit Genetics Cooperative Report, Indian Institute of Vegetable Research, Gandhi Nagar, Naria, India, (2003).
Google Scholar
[27]
G.B. Seymour, W.B. Mcglasson, Melons, Biochemistry of Fruit Ripening, (Seymour G.B., Taylor G.E., Tucker G.A.; eds. ) Chapman and Hall, London, (1993).
DOI: 10.1007/978-94-011-1584-1_9
Google Scholar
[28]
J.D. Ponting , Osmotic dehydration of fruits– recent modification and applications, Process Biochemistry, 8, 18–20. quality of fruits and vegetables, Volume II, Processed Fruits and Vegetables, 2ndEdition, CRC Press, Boca Raton, FL. (1973).
Google Scholar
[29]
A.S. Mujumdar, Drying fundamentals, p.7–30. In: C.G.J. Baker (Ed. ), Industrial Drying of Foods. Blackie Academic and Professional, London, UK, (1997).
DOI: 10.1007/978-1-4613-1123-2_2
Google Scholar
[30]
K. Paulson, M.A. Stevens, Relationships among titratable acidity, pH and buffer composition of tomato fruits, J. Food Sci. 39 (1974) 254-357.
DOI: 10.1111/j.1365-2621.1974.tb02893.x
Google Scholar