[1]
U. Bathini, T.S. Srivastsan, A. Patnaik and T. Quick: A Study of the Tensile Deformation and Fracture Behaviour of Commercially Pure Titanium and Titanium Alloy: Influence of Orientation and Microstructure, Journal of Materials Engineering and Performance. Vol. 19(2010).
DOI: 10.1007/s11665-010-9613-5
Google Scholar
[2]
R.R. Boyer: An Overview on the Use of Titanium in the Aerospace Industry, Materials Science and Engineering A. Vol. 213(1996) 103-114.
Google Scholar
[3]
O.O. Awopetu, O.A. Dahunsi, A.A. Aderoba and O.T. Johnson: Formation of Segmented Chips in Semi-Finish Turning of α-Titanium Alloy BT5, Advanced Materials Research. Vol. 367(2012) 265-272.
DOI: 10.4028/www.scientific.net/amr.367.265
Google Scholar
[4]
M. Greger, L. Kander, V. Snášel and M. Černý: Microstructure Evolution of Pure Titanium During ECAP, Materials Engineering - Materiálové inžinierstvo. Vol. 18(2011) 97-104.
Google Scholar
[5]
N. Poondla, T.S. Srivatsan, A. Patnaik and M. Petraroli: A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, Journal of Alloys and Compounds. Vol. 486(2009) 162-167.
DOI: 10.1016/j.jallcom.2009.06.172
Google Scholar
[6]
I. Bernáthová and M. Buršák: Properties of Pure Titanium and Ultra Fine Grained Titanium, Metalurgija. Vol. 50(2011) 249-252.
Google Scholar
[7]
A.G. Illarionov, M.S. Karabanalov and S.I. Stepanov: Formation of Structure, Phase Composition and Properties in Biocompatible TitaniumAlloy Due to Heat Treatment, Metal Science and Heat Treatment. Vol. 52(2010) 481-486.
DOI: 10.1007/s11041-010-9304-8
Google Scholar
[8]
R. Wanhill and S. Barter: Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys, Springer Briefs in Applied Sciences and Technology. (2012) 5-10.
DOI: 10.1007/978-94-007-2524-9
Google Scholar
[9]
H. Nasir-Abarbekoh, A. Ekrami and A.A. Ziaei-Moayyed: Impact of Phase Transformation on Mechanical Properties Anisotropy of Commercially Pure Titanium, Materials and Design. Vol. 37(2012) 223-227.
DOI: 10.1016/j.matdes.2011.12.040
Google Scholar
[10]
O.M. Ivasishin and P.E. Markovsky: Enhancing the Mechanical Properties of Titanium Alloys with Rapid Heat Treatment, Journal of Metals (JOM). Vol. 48(1996) 48-52.
DOI: 10.1007/bf03222998
Google Scholar
[11]
O.O. Awopetu, O.A. Dahunsi and A.A. Aderoba: Selection of Cutting Tool for Turning α-Titanium BT5, Assumption University Journal of Technology. Vol. 9(2005) 46-52.
Google Scholar
[12]
G. Sridhar, V. V. Kutumbarao and D. S. Sarma: The Influence of Heat Treatment on the Structure and Properties of a Near-a Titanium Alloy, Metallurgical Transactions A. Vol. 18A(1987) 877-891.
DOI: 10.1007/bf02646929
Google Scholar
[13]
I. Weiss and S.L. Semiatin: Thermomechanical Procesing of Alpha Titanium Alloys – An Overview, Materials Science and Engineering. Vol. A263(1999) 243 – 256.
DOI: 10.1016/s0921-5093(98)01155-1
Google Scholar
[14]
M. Greger, M. Widomská and L. Kander: Mechanical Properties of Ultra-Fine Grain Titanium, Journal of Achievement in Materials and Manufacturing Enginnering. Vol. 40(2010) 33-40.
Google Scholar
[15]
W. Zhong-Jin and S. Hui: Effect of Electropulsing on Anisotropy Behaviour of Cold-Rolled Commercially Pure Titanium Sheet, Transactions of Nonferrous Metallurgical Society of China. Vol. 19(2009) s409-s413.
DOI: 10.1016/s1003-6326(10)60079-9
Google Scholar
[16]
A. Pramanik, M. N. Islam, A. Basak and G. Littlefair: Machining and Tool Wear Mechanisms During Machining Titanium Alloys, Advanced Materials Research. Vol. 651 (2013) 338-343.
DOI: 10.4028/www.scientific.net/amr.651.338
Google Scholar
[17]
P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat and R. Glardon: Sintering of Commericially Pure Titanium Powder with a ND: YAG Laser Source, Acta Materialia. Vol. 51 (2003) 1651-1662.
DOI: 10.1016/s1359-6454(02)00567-0
Google Scholar
[18]
R. A. Hard and M. A. Prieto: Process of Making Titanium Metal from Titanium Ore, U.S. Patent Number 4390365, U.S. Patentand Trademark Office, Washington, D.C. , June 28, (1983).
Google Scholar
[19]
M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Ti based Biomaterials, the Ultimate Choice for Orthopaedic Implants – A Review, Progress in Materials Science. Vol. 54, No. 3 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[20]
M. A. Gepreel and M. Ninnomi: Biocompatibility of Ti-Alloys for Long-Term Implantation, Journal of the Mechanical Behaviour of Biomedical Materials. Vol. 20 (2013) 407-415.
DOI: 10.1016/j.jmbbm.2012.11.014
Google Scholar
[21]
C. Oldani and A. Dominguez: Titanium as a Biomaterial for Implants, Recent Advances in Arthroplasty, Dr. Samo Fokter (Ed. ), Intech, Croatia, 2012. Available from: http: /www. intechopen. com/books/recent-advances-in-arthroplasty/titanium-as-a-biomateralfor-implants.
DOI: 10.5772/27413
Google Scholar
[22]
H. Okamoto: Ti-Zn (Titanium - Zinc), Journal of Phase Equilibria and Diffusion. Vol. 29 (2008) 211-212.
DOI: 10.1007/s11669-008-9271-6
Google Scholar
[23]
J. L. Murray: The Ti-Zn (Titanium – Zinc) Systems, Phase Diagrams of Binary Titanium Alloys, J. L. Murray, Ed., Monograph Series on Alloy Phase Diagrams, ASM International, Metals Park, Ohio, 1987, 340 -345.
DOI: 10.1007/bf02868725
Google Scholar
[24]
C. Leyens and M. Peter: Titanium and Titanium Alloys; Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, New York, (2003).
Google Scholar