Enhancement of Microstructural and Hardness Properties of Commercially Pure Titanium (Ti-0.5Zn) by Thermomechanical Processing

Article Preview

Abstract:

Titanium alloys are widely used in the aerospace, biotechnology, automotive, energy, marine industrial constructions and components due to their high strength-to-density ratio, excellent fatigue/crack propagation behaviour and corrosion resistance. This study investigates the αβ phase transformation which Ti-0.5Zn alloy undergoes on being subjected to heat treatment with the aim of improving its properties and to enhance its industrial application. The β phase, with Widmatansttäten type growth was produced by heat treatment of the alloy in the temperature range of 800°C to 1000°C. The resultant microstructure and hardness of the alloy was also investigated. The result showed improved morphology evidenced by transformation from the equiaxed grains to more lamellar structures in the samples. Hardness property improved by 20% too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

275-282

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Bathini, T.S. Srivastsan, A. Patnaik and T. Quick: A Study of the Tensile Deformation and Fracture Behaviour of Commercially Pure Titanium and Titanium Alloy: Influence of Orientation and Microstructure, Journal of Materials Engineering and Performance. Vol. 19(2010).

DOI: 10.1007/s11665-010-9613-5

Google Scholar

[2] R.R. Boyer: An Overview on the Use of Titanium in the Aerospace Industry, Materials Science and Engineering A. Vol. 213(1996) 103-114.

Google Scholar

[3] O.O. Awopetu, O.A. Dahunsi, A.A. Aderoba and O.T. Johnson: Formation of Segmented Chips in Semi-Finish Turning of α-Titanium Alloy BT5, Advanced Materials Research. Vol. 367(2012) 265-272.

DOI: 10.4028/www.scientific.net/amr.367.265

Google Scholar

[4] M. Greger, L. Kander, V. Snášel and M. Černý: Microstructure Evolution of Pure Titanium During ECAP, Materials Engineering - Materiálové inžinierstvo. Vol. 18(2011) 97-104.

Google Scholar

[5] N. Poondla, T.S. Srivatsan, A. Patnaik and M. Petraroli: A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, Journal of Alloys and Compounds. Vol. 486(2009) 162-167.

DOI: 10.1016/j.jallcom.2009.06.172

Google Scholar

[6] I. Bernáthová and M. Buršák: Properties of Pure Titanium and Ultra Fine Grained Titanium, Metalurgija. Vol. 50(2011) 249-252.

Google Scholar

[7] A.G. Illarionov, M.S. Karabanalov and S.I. Stepanov: Formation of Structure, Phase Composition and Properties in Biocompatible TitaniumAlloy Due to Heat Treatment, Metal Science and Heat Treatment. Vol. 52(2010) 481-486.

DOI: 10.1007/s11041-010-9304-8

Google Scholar

[8] R. Wanhill and S. Barter: Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys, Springer Briefs in Applied Sciences and Technology. (2012) 5-10.

DOI: 10.1007/978-94-007-2524-9

Google Scholar

[9] H. Nasir-Abarbekoh, A. Ekrami and A.A. Ziaei-Moayyed: Impact of Phase Transformation on Mechanical Properties Anisotropy of Commercially Pure Titanium, Materials and Design. Vol. 37(2012) 223-227.

DOI: 10.1016/j.matdes.2011.12.040

Google Scholar

[10] O.M. Ivasishin and P.E. Markovsky: Enhancing the Mechanical Properties of Titanium Alloys with Rapid Heat Treatment, Journal of Metals (JOM). Vol. 48(1996) 48-52.

DOI: 10.1007/bf03222998

Google Scholar

[11] O.O. Awopetu, O.A. Dahunsi and A.A. Aderoba: Selection of Cutting Tool for Turning α-Titanium BT5, Assumption University Journal of Technology. Vol. 9(2005) 46-52.

Google Scholar

[12] G. Sridhar, V. V. Kutumbarao and D. S. Sarma: The Influence of Heat Treatment on the Structure and Properties of a Near-a Titanium Alloy, Metallurgical Transactions A. Vol. 18A(1987) 877-891.

DOI: 10.1007/bf02646929

Google Scholar

[13] I. Weiss and S.L. Semiatin: Thermomechanical Procesing of Alpha Titanium Alloys – An Overview, Materials Science and Engineering. Vol. A263(1999) 243 – 256.

DOI: 10.1016/s0921-5093(98)01155-1

Google Scholar

[14] M. Greger, M. Widomská and L. Kander: Mechanical Properties of Ultra-Fine Grain Titanium, Journal of Achievement in Materials and Manufacturing Enginnering. Vol. 40(2010) 33-40.

Google Scholar

[15] W. Zhong-Jin and S. Hui: Effect of Electropulsing on Anisotropy Behaviour of Cold-Rolled Commercially Pure Titanium Sheet, Transactions of Nonferrous Metallurgical Society of China. Vol. 19(2009) s409-s413.

DOI: 10.1016/s1003-6326(10)60079-9

Google Scholar

[16] A. Pramanik, M. N. Islam, A. Basak and G. Littlefair: Machining and Tool Wear Mechanisms During Machining Titanium Alloys, Advanced Materials Research. Vol. 651 (2013) 338-343.

DOI: 10.4028/www.scientific.net/amr.651.338

Google Scholar

[17] P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat and R. Glardon: Sintering of Commericially Pure Titanium Powder with a ND: YAG Laser Source, Acta Materialia. Vol. 51 (2003) 1651-1662.

DOI: 10.1016/s1359-6454(02)00567-0

Google Scholar

[18] R. A. Hard and M. A. Prieto: Process of Making Titanium Metal from Titanium Ore, U.S. Patent Number 4390365, U.S. Patentand Trademark Office, Washington, D.C. , June 28, (1983).

Google Scholar

[19] M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Ti based Biomaterials, the Ultimate Choice for Orthopaedic Implants – A Review, Progress in Materials Science. Vol. 54, No. 3 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[20] M. A. Gepreel and M. Ninnomi: Biocompatibility of Ti-Alloys for Long-Term Implantation, Journal of the Mechanical Behaviour of Biomedical Materials. Vol. 20 (2013) 407-415.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[21] C. Oldani and A. Dominguez: Titanium as a Biomaterial for Implants, Recent Advances in Arthroplasty, Dr. Samo Fokter (Ed. ), Intech, Croatia, 2012. Available from: http: /www. intechopen. com/books/recent-advances-in-arthroplasty/titanium-as-a-biomateralfor-implants.

DOI: 10.5772/27413

Google Scholar

[22] H. Okamoto: Ti-Zn (Titanium - Zinc), Journal of Phase Equilibria and Diffusion. Vol. 29 (2008) 211-212.

DOI: 10.1007/s11669-008-9271-6

Google Scholar

[23] J. L. Murray: The Ti-Zn (Titanium – Zinc) Systems, Phase Diagrams of Binary Titanium Alloys, J. L. Murray, Ed., Monograph Series on Alloy Phase Diagrams, ASM International, Metals Park, Ohio, 1987, 340 -345.

DOI: 10.1007/bf02868725

Google Scholar

[24] C. Leyens and M. Peter: Titanium and Titanium Alloys; Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, New York, (2003).

Google Scholar