[1]
C. A. Kogbe, Geology of Nigeri. Rockview Ltd., Jos, Nigeria, (1989).
Google Scholar
[2]
J. Dorr, Pore forming with carbonaceous clay blends- without strength loss but with simultaneous energy wsaving. CERAMITEC- J. of Brick and Tile Intern., (2006) 122-135. I.
Google Scholar
[3]
W. R. Hee, S. C, Kyeoug, K. O. Yong, D. K. Song, and M. I. Tadehiro, Refinement of low-grade clay by microbial removal using Thiobacillus ferroxidans. J. of Fermentation and Bioengineering, Vol. 80. (1995) 43-51.
Google Scholar
[4]
S. Hillier, Mineralogy and chemical data of clay materials". In: G. M. Reeves, I. Sims and J. C. Crips, edit. Materials used in Construction,. London Geological Society: Engineering Geology Special Publication, Vol. 21, 2006 pp.449-459.
Google Scholar
[5]
A. A. Sabtan, Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia". J, of the Asian Earth Science, Vol. 25. Issue 5. (2005) 749-757.
DOI: 10.1016/j.jseaes.2004.07.003
Google Scholar
[6]
BS 1377: Methods of Tests for Soils for Civil Engineering Purposes. BSI, London. (1990).
Google Scholar
[7]
M. D. Gidigasu, Laterite Soil Engineering. Elsevier, Amsterdam, (1976).
Google Scholar
[8]
W. D. Nesse, Introduction to Mineralogy. Oxford University Press, New York, (2000).
Google Scholar
[9]
K. Komnitsas, I. Paspaliaris, D. Zliberchmidt and S. Groudev Environmental Impacts of Coal waste disposal sites - Efficiency of desulphurization. Technologies. Global Nest: The Int. J., Vol. 3, No 2. (2001) 103-110.
DOI: 10.30955/gnj.000209
Google Scholar
[10]
About. com Pottery: Plasticity of clay. http: /about. pottery. com/od/plasticity-of-clay. 23 05 (2012).
Google Scholar
[11]
P. G. Fookes Geomaterials,. Q. J. of Eng. Geol., Vol. 34 (1), (1991) 1-5.
Google Scholar
[12]
O. Yardi, E. Yarali, G. Bazak and P. G. Bryth, P. G. (2008). A Study of rock abrasivity and tool wear in Coal Measures Rock. I J. of Coal Geology. Vol. 76, Issue 1. (2008) 63-68.
DOI: 10.1016/j.coal.2007.09.007
Google Scholar
[13]
M. D. Spangler and R. L. Handy, Soil Engineering" Harper & Row. New York. (1989).
Google Scholar
[14]
R. K. Mehtra and P. J. Monteiro, Concrete Microstructure, Properties and Materials. 2nd ed. McGraw Hill Book, New York, (1988).
Google Scholar
[15]
D. D. Higgens and J. M. Kinuthia, Pyrite Oxidation, Expansion of stabilized clay and the effect of ggbs. Proc. of European Symp. on Performance of Bituminous and Hydraulic Materials in Pavements. U. K. (2000) 11-12.
DOI: 10.4324/9780203743928-26
Google Scholar
[16]
F. G. Bell and S. E. T. Bullock, The problem of acid mine drainage, with an illustrative case history. Environ. and Eng. Geosciences 2, (1996) 369-392.
Google Scholar
[17]
F. G. Bell, Engineering Geology and Construction. Spon Press, London, (2009).
Google Scholar
[18]
M. O'Kaine, D. Porterfield, and A. Weir, Pyritic shale integration into waste rock management, Mount Whaleback". Nat. Meeting of the Amer. Soc. for Surf. Min. and Reclam. Arizona (1999) 13-19.
DOI: 10.21000/jasmr99010299
Google Scholar
[19]
About. com Pottery: Aging of clay http: /pottery. about. com/Aging-ofClay/od/g/ceramics 28 04 (2012).
Google Scholar
[20]
J. A. Franklin and M. B. Dusseault, Rock Engineering Applications. McGraw Hill Books Co., New York, (1991).
Google Scholar
[21]
Z. Adams and R. B. William. Environmental health criteria: bentonite, kaolinite. W. H. O. Report on Clays. (2005) 116 pp.
Google Scholar
[22]
C. O. Harvey and H. H. Murray. Industrial clays in the 21st century: A perspective of exploration, technology and utilization., Applied Clay Science, Vol. 52. Issue 3. (1997) 105-111.
DOI: 10.1016/s0169-1317(96)00028-2
Google Scholar
[23]
L. R. Chapman Inc. Industrial Minerals and Services: Clays and Shales. http: /irchapman. com/clay. html... 03 05 (2012).
Google Scholar
[24]
ASTM C 410-11 Standard Specifications for Industrial Floor Brick. ASTM, Pa, U.S. A.
Google Scholar
[25]
ASTM C 902-12a Standard Specification for Pedestrian and Light Traffic Paving Brick.
Google Scholar
[26]
ASTM C1273-11a. Standard Specification for Heavy Vehicular Paving Brick.
Google Scholar