[1]
Sandström Å, Shchukarev A, Paul J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Minerals Engineering 18 (2004) 505-515.
DOI: 10.1016/j.mineng.2004.08.004
Google Scholar
[2]
Debernardi G, Carlesi C. Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metal Rev 34 (2013) 10-41.
Google Scholar
[3]
Crundwell FK. How do bacteria interact with minerals? Hydrometallurgy 71 (2003) 75-81.
DOI: 10.1016/s0304-386x(03)00175-0
Google Scholar
[4]
Harvey PI, Crundwell FK. Growth of Thiobacillus ferrooxidans: a novel experimental design for batch growth and bacterial leaching studies. Applied and Environmental Microbiology 63 (1997) 2586-2592.
DOI: 10.1128/aem.63.7.2586-2592.1997
Google Scholar
[5]
Fowler TA, Holmes PR, Crundwell FK. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology 65 (1999) 2987-2993.
DOI: 10.1128/aem.65.7.2987-2993.1999
Google Scholar
[6]
Fowler TA, Crundwell FK. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Applied and Environmental Microbiology 65 (1999).
DOI: 10.1128/aem.65.12.5285-5292.1999
Google Scholar
[7]
Hazeu W, Batenburg-van dV, Bos P, Pas RK, Kuenen JG. The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Archives of Microbiology 150 (1988) 574-579.
DOI: 10.1007/bf00408252
Google Scholar
[8]
Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A. Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy 93 (2008) 81-87.
DOI: 10.1016/j.hydromet.2008.04.015
Google Scholar
[9]
Koleini SMJ, Aghazadeh V, Sandström A. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite. Minerals Engineering 24 (2011) 381-386.
DOI: 10.1016/j.mineng.2010.11.008
Google Scholar