[1]
P. Erdos and A. Rényi: On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences Vol. 5(1960), pp.17-61.
Google Scholar
[2]
D.J. Watt and S.H. Strogatz: Collective dynamics of small-world, networks, Nature Vol. 393, (1998), pp.440-442.
DOI: 10.1038/30918
Google Scholar
[3]
M.E.J. Newman and D.J. Watts: Scaling and percolation in the small-world network model. Phys. Rev. E Vol. 60 (1999), pp.7332-7342.
DOI: 10.1103/physreve.60.7332
Google Scholar
[4]
A.L. Barabási and R. Albert: Emergence of Scaling in Random Networks. Science Vol. 286(1999), pp.509-512.
Google Scholar
[5]
R´. Albert, I. Albert and G.L. Nakarado: Structural Vulnerability of the North American Power Grid. Physical Review E Vol. 69(2004), pp.1-4.
DOI: 10.1103/physreve.69.025103
Google Scholar
[6]
P. Holm, B.J. Kim, C.N. Yoon and S.K. Han: Attack vulnerability of complex networks. Physical Review E Vol. 65(2002), 056109.
Google Scholar
[7]
E. Bompard, D. Wu and F. Xue: The Concept of Betweenness in the Analysis of Power Grid Vulnerability. International Conference on Complexity in Engineering (2010), pp.52-54.
DOI: 10.1109/compeng.2010.10
Google Scholar
[8]
K. Wang, D.H. Zhang, Z. Zhang, X.G. Yin and B. Wang: An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load. Physica A Vol. 390 (2011), pp.4692-4701.
DOI: 10.1016/j.physa.2011.07.031
Google Scholar
[9]
E. Bompard, D. Wu and F. Xue: Structural vulnerability of power systems: A topological approach. Electric Power Systems Research Vol. 81(2011), pp.1334-1340.
DOI: 10.1016/j.epsr.2011.01.021
Google Scholar
[10]
J.W. Wang and L.L. Rong: Cascade-based attack vulnerability on the US power grid. Safety Science Vol. 47(2009), pp.1332-1336.
DOI: 10.1016/j.ssci.2009.02.002
Google Scholar
[11]
J.W. Wang and L.L. Rong: Vulnerability of effective attack on edges in scale-free networks due to cascading failures. International Journal of Modern Physics C Vol. 20(2009), pp.1291-1298.
DOI: 10.1142/s0129183109014357
Google Scholar
[12]
J.W. Wang and L.L. Rong: Edge-based-attack induced cascading failures on scale-free networks. Physica A Vol. 388(2009), pp.1731-1737.
DOI: 10.1016/j.physa.2009.01.015
Google Scholar
[13]
J.W. Wang: Robustness of Heterogenous Networks with Mitigation Strategy Against Cascading Failures. Modern Physics Letters B. Vol. 26(2012), 1250087.
DOI: 10.1142/s021798491250087x
Google Scholar
[14]
K. Yu, L.L. Rong and J.W. Wang: A new attack on scale-free networks based on cascading failures. Modern Physics Letters B Vol. 23(2009), pp.2497-2505.
DOI: 10.1142/s0217984909020667
Google Scholar
[15]
P. Crucitti, V. Latora and M. Marchiori: A topological analysis of the Italian electric power grid. Physica A Vol. 338(2004), pp.92-97.
DOI: 10.1016/j.physa.2004.02.029
Google Scholar
[16]
R. Kinney, P. Crucitti, R. Albert and V. Latora: Modeling Cascading Failures in the North American Power Grid. The European Physical Journal B Vol. 46(2005), pp.101-107.
DOI: 10.1140/epjb/e2005-00237-9
Google Scholar
[17]
G. Chen, Z. Y. Dong, D.J. Hill and G.H. Zhang: An improved model for structural vulnerability analysis of power networks. Physica A Vol. 388(2009), pp.4259-4266.
DOI: 10.1016/j.physa.2009.06.041
Google Scholar
[18]
W.K. Wang, Q. Cai, Y. Sun and H.B. He: Risk-aware Attacks and Catastrophic Cascading Failures in US Power Grid. Global Telecommunications Conference (2011), pp.1-6.
DOI: 10.1109/glocom.2011.6133788
Google Scholar
[19]
V. Latora and M. Marchiori: Efficient Behavior of Small-World Networks, Physical Review Letters Vol. 87(2001), 198701.
Google Scholar