Effect of High Pulsed Electric Field Pretreatment on Hot Air Drying Rate of Sea Cucumber

Article Preview

Abstract:

In order to improve the drying rate and to reduce the energy consumption of aquatic product, sea cucumber were treated with high pulse electric field (HPEF) in different frequency, and different voltage. The hot air drying rate of treated sea cucumber was determined and, meanwhile, several quality parameters such as the shrinkage and rehydration rate of samples with pretreatment were determined to compare with those of untreated samples. The results indicated that the hot air drying rate and rehydration rate of sea cucumber can be improved and the shrinkage of sea cucumber can be decreased by HPEF pretreatment, and while HPEF pretreatment was applied for 22.5kV at a frequency of 70Hz, the drying rate could be increased approximately 58%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-403

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Q. Wang, M. Zhang, A.S. Mujumdar: Drying Technology Vol. 29 (2011), p.382.

Google Scholar

[2] G.M. Kituu, , D. Shitanda. C.L. Kanali, J.T. Mailutha, C.K. Njoroge, J.K. Wainaina, V.K. Silayo: Journal of Food Engineering Vol. 98 (2010), p.325.

DOI: 10.1016/j.jfoodeng.2010.01.009

Google Scholar

[3] H.J. Gwak, J.B. Eun: Journal of Aquatic Food Product Technology Vol. 19 (2010. ), p.274.

Google Scholar

[4] M.S. Reza, M. A. J. Bapary, M. N. Islam, M. Kamal: Journal of food processing and preservation Vol. 33(2009), p.47.

Google Scholar

[5] Y.X. Bai, Y.X. Yang, Q. Huang: Drying Technology Vol. 30 (2012), p.1051.

Google Scholar

[6] Y.X. Bai, B. Sun: Journal of Food Processing and Preservation Vol. 35 (2011), p.891.

Google Scholar

[7] J. A. Gallego-Juarez, G. Rodriguez-Corral: Drying Technology Vol. 17 (1999), p.597.

Google Scholar

[8] D. Yun, Y. Y. Zhao: Journal of Food Engineering Vol. 85 (2008) , p.84.

Google Scholar

[9] U. Zimmermann, G. Pilwat, F. Riemann: Biophysical Journal Vol. 14 (1974), p.881.

Google Scholar

[10] N. I. Lebovka, N. V. Shynkaryk, E. Vorobiev: Journal of Food Engineering Vol. 78 (2007), p.606.

Google Scholar

[11] X. Duan, M. Zhang, X. L. Li, A.S. Mujumdar: Drying Technology Vol. 26 (2008), p.420.

Google Scholar

[12] M. Fincan, F. DeVito, P. Dejmek: Journal of Food Engineering Vol. 64 (2004), p.381.

Google Scholar

[13] N.I. Lebovka, I. Praporscic, E. Vorobiev: Journal of Food Engineering Vol. 59 (2005), p.309.

Google Scholar

[14] Y. l. Wu, Y. M. Guo, D. G. Zhang: Drying Technology Vol. 29 (2011), p.1714.

Google Scholar

[15] E. Amami, L. Khezami, E. Vorobiev, N. Kechaou: Drying Technology Vol. 26 (2008), p.231.

Google Scholar

[16] R. Soliva-Fortuny, A. Balasa, D. Knorr: Trends in Food Science & Technology Vol. 20 (2009), p.544.

Google Scholar

[17] A. Angersbach, V. Heinz, D. Knorr: Lebensmittel-und Verpackungstechnik (LVT) Vol. 42 (1997), p.195.

Google Scholar

[18] B.I.O. Ade-Omowaye, N.K. Rastogi, A. Angersbach, D. Knorr: Journal of Food Engineering Vol. 54 (2002), 54(1), p.35.

DOI: 10.1016/s0260-8774(01)00183-2

Google Scholar

[19] T.K. Gachovska, A.A. Adedeji, M. Ngadi, G.V.S. Raghavan: Drying Technology Vol. 26 (2008), p.1244.

DOI: 10.1080/07373930802307175

Google Scholar

[20] M.V. Shynkaryk, N.I. Lebovka, E. Vorobiev: Drying Technology Vol. 26 (2008), p.695.

Google Scholar