Effects of Anodic Oxidation in Ethylene Glycol Based Electrolyte on the Corrosion Resistance and Biocompatibility of NiTi Shape Memory Alloy

Article Preview

Abstract:

Nickel titanium (NiTi) is the most attractive shape memory alloy in industrial and in medical application but suffer from corrosion attack by body fluids. Nowadays, Electrochemical anodization has become a popular surface modification method for biomaterials. In this study we prepared TiO2 coating with nanoporous surface morphology on NiTi shape memory alloy by using electrochemical anodization in ethylene glycol based electrolyte followed by annealing in 600 °C and explored its appropriateness for biomedical applications. Morphology and crystal structure of the film was characterized by Field emission scanning electron microscopiy (FE-SEM) and X-ray diffraction (XRD) tests. The corrosion resistance of the treated NiTi alloy was investigated by potentiodynamic polarization test and The findings showed that the anodization in ethylene glycol solution extremely increased the corrosion resistance and hence biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-435

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Hang, X. Huang, L. Tian, Z. He, B. Tang, Preparation, characterization, corrosion behavior and bioactivity of Ni2O3-doped TiO2 nanotubes on NiTi alloy, Electrochimica Acta 70 (2012) 382– 393.

DOI: 10.1016/j.electacta.2012.03.085

Google Scholar

[2] S. Bernard, V. Balla, N. Davies, S. Bose, A. Bandyopadhyay, Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy, Acta Biomaterialia 7 (2011) 1902–(1912).

DOI: 10.1016/j.actbio.2011.01.004

Google Scholar

[3] F.T. Cheng, P. Shi, G.K.H. Pang, M.H. Wong, H.C. Man, Microstructural characterization of oxide film formed on NiTi by anodization in acetic acid, Journal of Alloys and Compounds 438 (2007) 238–242.

DOI: 10.1016/j.jallcom.2006.08.020

Google Scholar

[4] J. Kawakita, M. Stratmann and A. Hassel, High Voltage Pulse Anodization of a NiTi Shape Memory Alloy, Journal of The Electrochemical Society, 154 (2007) 294-298.

DOI: 10.1149/1.2720768

Google Scholar

[5] N. Bayat, S. Sanjabi, Z.H. Barber, Improvement of corrosion resistance of NiTi sputtered thin films by anodization, Applied Surface Science 257 (2011) 8493–8499.

DOI: 10.1016/j.apsusc.2011.05.001

Google Scholar

[6] W. Chrzanowski. E. A. Abou Neel. D. A. Armitage. J. C. Knowles, Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation, J Mater Sci: Mater Med (2008) 1553–1557.

DOI: 10.1007/s10856-008-3374-9

Google Scholar

[7] M.H. Wong, F.T. Cheng, H.C. Man, Characteristics, apatite-forming ability and corrosion resistance of NiTi surface modified by AC anodization, Applied Surface Science 253 (2007) 7527–7534.

DOI: 10.1016/j.apsusc.2007.03.055

Google Scholar

[8] R. Qin, D.Y. Ding, C.Q. Ning, H.G. Liu, B.S. Zhu, M. Li, D.L. Mao, Ni-doped TiO2 nanotube arrays on shape memory alloy, Applied Surface Science 257 (2011) 6308–6313.

DOI: 10.1016/j.apsusc.2011.02.072

Google Scholar

[9] V. Togan, S. Grassini, G. Ionita, Surface modification of NiTi alloy by anodizing, Metalurgia International (2012) 20-24.

Google Scholar

[10] C.L. Chu, R.M. Wang, L.H. Yin, Y.P. Pu, P.H. Lin, Y.S. Dong, C.Y. Chung, K.W.K. Yeung, P.K. Chu, Effects of anodic oxidation in H2SO4 electrolyte on the biocompatibility of NiTi shape memory alloy, Materials Letters 62 (2008) 3512–3514.

DOI: 10.1016/j.matlet.2008.03.030

Google Scholar

[11] C. L. Chu, R. M. Wang, T. Hu , L. H. Yin, Y. P. Pu, P. H. Lin, Y. S. Dong, C. Guo, C. Y. Chung, W. K. Yeung, Paul K. Chu, XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy, J Mater Sci: Mater Med (2009) 223–228.

DOI: 10.1007/s10856-008-3563-6

Google Scholar

[12] P. Shi, F.T. Cheng, H.C. Man, Improvement in corrosion resistance of NiTi by anodization in acetic acid, Materials Letters 61 (2007) 2385–2388.

DOI: 10.1016/j.matlet.2006.09.020

Google Scholar

[13] C. Huang, Y. Xie, L. Zhou and H. Huang, Enhanced surface roughness and corrosion resistance of NiTi alloy by anodization in diluted HF solution, Smart Mater. Struct. 18 (2009) 24003-24009.

DOI: 10.1088/0964-1726/18/2/024003

Google Scholar

[14] T. Kokubo, H. Takadama, Biomaterials 27 (2006) 2907–2915.

Google Scholar

[15] ASTM Standard G 61-86, Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility in Iron-, Nickel-, or Cobalt-Based Alloys, ASTM Standards, ASTM, Philadelphia, PA, USA.

DOI: 10.1520/g0061-86r09

Google Scholar

[16] S. Li, G. Zhang, D. Guo, L. Yu and Wei Zhang, Anodization Fabrication of Highly Ordered TiO2 Nanotubes, J. Phys. Chem. C (2009) 12759–12765.

DOI: 10.1021/jp903037f

Google Scholar

[17] J. Kim, K. Zhu, Y. Yan, C. Perkins and J. Frank, Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO2 Nanotube Arrays, Nano Lett. 2010, 10, 4099–4104.

DOI: 10.1021/nl102203s

Google Scholar

[18] B. Chen, J. Hou and K. Lu, Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors, Langmuir 2013, 29, 5911−5919.

DOI: 10.1021/la400586r

Google Scholar