[1]
Geim AK, Novoselov KS. The rise of graphene. Nat Mater (2007); 6(3): 183–91.
Google Scholar
[2]
Na Liu, Fang Luo, Haoxi Wu, Yinghui Liu, Chao Zhang, and Ji Chen, One-Step Ionic-Liquid-Assisted Electrochemical Synthesis ofIonic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater. (2008), 18, 1518–1525.
DOI: 10.1002/adfm.200700797
Google Scholar
[3]
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV. Electric field effect in atomically thin carbon films. Science (2004); 306: 666–9.
DOI: 10.1126/science.1102896
Google Scholar
[4]
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV. Two dimensional atomic crystals. Proc Natl Acad Sci (2005); 102(30): 10451–3.
DOI: 10.1073/pnas.0502848102
Google Scholar
[5]
Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Epitaxial Graphene on Ruthenium. Nat. Mater. (2008), 7, 406–411.
DOI: 10.1038/nmat2166
Google Scholar
[6]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (2009), 324, 1312–1314.
DOI: 10.1126/science.1171245
Google Scholar
[7]
Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. (2009), 4, 217–224.
Google Scholar
[8]
Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem (2006); 16: 155–8.
DOI: 10.1039/b512799h
Google Scholar
[9]
Wang G, Yang J, Park J, Gou X, Wang B, Liu H. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C (2008); 112: 8192–5.
DOI: 10.1021/jp710931h
Google Scholar
[10]
K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj and C. N. R. Rao. A study of graphenes prepared by different methods: characterization, properties and solubilization J Mater Chem. (2008), 18, 1517-1523.
DOI: 10.1039/b716536f
Google Scholar
[11]
Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech (2008). 3, 270–274.
DOI: 10.1038/nnano.2008.83
Google Scholar
[12]
Li, D. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3(2008), 101–105.
Google Scholar
[13]
Sukang Bae. Roll-to-roll production of 30-inch graphene films for transparent electrods. Nature Nanotech. 5, (2010)574–578.
Google Scholar
[14]
Un Jeong Kim. Graphene/Carbon nanotube hybrid-based transparent 2D optical array. Adv. Material (2011).
Google Scholar
[15]
Murat Alanyalıog˘ lu, Juan Jose` Segura, Judith Oro´ -Sole`, Nieves Casan˜ -Pastor. The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes, carbon 50(2012)142–152.
DOI: 10.1016/j.carbon.2011.07.064
Google Scholar
[16]
Ching-Yuan Su. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano (2011), 5(3), 2332–2339.
DOI: 10.1021/nn200025p
Google Scholar
[17]
Sajini Vadukumpully, Jinu Paul, Suresh Valiyaveettil. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon, Nov. (2009), 3288–3294.
DOI: 10.1016/j.carbon.2009.07.049
Google Scholar
[18]
Zhen Yuan Xia. The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonication-Assisted Techniques: A Nanoscale Study. Adv. Funct. Material (2013).
Google Scholar
[19]
Guoxiu Wang, Bei Wang, Jinsoo Park, Ying Wang, Bing Sun, Jane Yao. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, Nov. (2009), 3242–3246.
DOI: 10.1016/j.carbon.2009.07.040
Google Scholar
[20]
Yenny Hernandez. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, (2008) 563 – 568.
Google Scholar
[21]
Stephanie Reich1 and Christian Thomsen. Raman spectrum of graphite. Royal Society 14 September 2004. (2004). 1454.
Google Scholar
[22]
A. C. Ferrari and J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Physical review 24 November (1999).
Google Scholar
[23]
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett (2007); 7: 238–42.
DOI: 10.1021/nl061702a
Google Scholar
[24]
Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett (2008); 8: 36–41.
DOI: 10.1021/nl071822y
Google Scholar
[25]
O. Akhavan . The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon, Feb. (2010), 509–519.
DOI: 10.1016/j.carbon.2009.09.069
Google Scholar
[26]
Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC. Raman scattering from high-frequency phonons in supported ngraphene layer films. Nano Lett (2006); 6(12): 2667–73.
DOI: 10.1021/nl061420a
Google Scholar
[27]
Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene nanosheets. Nature (2007); 446: 60–3.
DOI: 10.1038/nature05545
Google Scholar