[1]
W. Oelerich, T. Klassen, R. Bormann, Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg, J. Alloys Comp. 322 (2001) L5-L9.
DOI: 10.1016/s0925-8388(01)01173-2
Google Scholar
[2]
J. Huot , J.F. Pelletier, G. Liang, M. Sutton, R. Schulz, Structure of nanocomposite metal hydrides, J. Alloys Comp. 330–332 (2002) 727-731.
DOI: 10.1016/s0925-8388(01)01662-0
Google Scholar
[3]
S. Bouaricha, J. Huot , D. Guay, R. Schulz, Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds, Int. J. Hydrogen Energy 27 (2002) 909-913.
DOI: 10.1016/s0360-3199(01)00183-5
Google Scholar
[4]
Gu Hao, Zhu Yunfeng, Li Liquan, Characterization of hydrogen storage properties of Mg-30 wt. % Ti1. 0V1. 1Mn0. 9 composite, J. Alloys Comp. 424 (2006) 382-387.
DOI: 10.1016/j.jallcom.2006.01.005
Google Scholar
[5]
A. Ranjbar, Z.P. Guo , X.B. Yu, D. Attard , A. Calka , H.K. Liu, Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy 34 (2009) 7263-7268.
DOI: 10.1016/j.ijhydene.2009.07.005
Google Scholar
[6]
Li Qian, Xu Kuangdi, Chou Kuochih, Lu Xionggang, and Lin Qin, Kinetics of hydrogen absorption and desorption of a mechanically milled MgH2+ 5at%V nanocomposite, J. Uni. Sci . Tech. Beijing 13 (2006) 359-362.
DOI: 10.1016/s1005-8850(06)60074-1
Google Scholar
[7]
H. Gasan, O.N. Celik, N. Aydinbeyli, Y. M. Yaman, Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride, Int. J. Hydrogen Energy 37 (2012) 1912-(1918).
DOI: 10.1016/j.ijhydene.2011.05.086
Google Scholar
[8]
S. Milosevic, Z.R. Lovre, S. Kurko, R. Vujasin, N. Cvjetic anin, L. Matovic, J.G. Novakovic, Influence of VO2 nanostructured ceramics on hydrogen desorption properties from magnesium hydride, Ceramics Int. 39 (2013) 51-56.
DOI: 10.1016/j.ceramint.2012.05.091
Google Scholar
[9]
E. Grigorova , M. Khristov, M. Khrussanova , P. Peshev, Hydrogen sorption characteristics of the composites 90 wt. % Mg (MgH2)–10 wt. % V0. 855Ti0. 095Fe0. 05, J. Mater. Sci. 43 (2008) 5336-5341.
DOI: 10.1007/s10853-008-2779-7
Google Scholar
[10]
M.O.T. da Conceiço, M.C. Brum, D.S. dos Santos, The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties, J. Alloys Comp., In press.
DOI: 10.1016/j.jallcom.2012.12.131
Google Scholar
[11]
Y. Song, Z.X. Guo, R. Yang, Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation Phys. Rev. B 69 (2004) 205-9.
DOI: 10.1103/physrevb.69.094205
Google Scholar
[12]
C.X. Shang, M. Bouodina, Y. Song, Z.X. Guo, Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 29 (2004) 73-80.
DOI: 10.1016/s0360-3199(03)00045-4
Google Scholar
[13]
M. Polanski, J. Bystrzycki, T. Plocinski, The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles, Int . J . Hydrogen Energy 33 ( 2008 ) 1859-1867.
DOI: 10.1016/j.ijhydene.2008.01.043
Google Scholar
[14]
H. Gasan , O.N. Celik , N. Aydinbeyli , Y.M. Yaman, Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride, Int. J. Hydrogen Energy 37 (2012) 1912-(1918).
DOI: 10.1016/j.ijhydene.2011.05.086
Google Scholar
[15]
H. Gasan, N. Aydinbeyli, O.N. Celik, Y.M. Yaman, The dependence of the hydrogen desorption temperature of MgH2 on its structural and morphological characteristics, J. Alloys Comp. 487 (2009) 724-729.
DOI: 10.1016/j.jallcom.2009.08.062
Google Scholar