[1]
Z. Andjic,M. Korac, Z. Kamberovic, A. Vujovic, Tasic, Analysis of the Properties of a Cu-Al2O3 Sintered System based on UltraFine and Nanocomposite Powders, Sc. Sintering, 39 (2007) 145-152.
DOI: 10.2298/sos0702145a
Google Scholar
[2]
Z. Zhang, D. L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Pages 1321-1326 Scripta Mater., 54 (2006) 1321-1326.
DOI: 10.1016/j.scriptamat.2005.12.017
Google Scholar
[3]
M. Korac1, Z. Kamberovic, Z. Andjic, M. Filipovic, M. Tasic, Sintered materials based on copper and alumina powders synthesised by a novel method, Sc. Sintering, 42 (2010) 81-90.
DOI: 10.2298/sos1001081k
Google Scholar
[4]
D.W. Lee, B.K. Kim, Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application Mater. Lett, 58 (2004) 378– 383.
DOI: 10.1016/s0167-577x(03)00505-6
Google Scholar
[5]
M. Korac, Z. Andic, M. Tasic, Z. Kamberovic, Sintering of Cu-Al2O3 nanocomposite powder produced by thermochemical route, J. serb. chem. soc. 72 (11) (2007) 1115-1125.
DOI: 10.2298/jsc0711115k
Google Scholar
[6]
G. Q. Yuana, H. F. Jiang, C. Lina, S. J. Liaoa, J. Cryst. Growth, 303 (2007) 400.
Google Scholar
[7]
VIŠESLAVA RAJKOVIĆ, DUŠAN BOŽIĆ and MILAN T. JOVANOVIĆ, Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling, J. Serb. Chem. Soc. 74 (5) 595–605 (2009).
DOI: 10.2298/jsc0905595r
Google Scholar
[8]
A. L Morales, electrodeposited metal matrix nano-composite s as thin films and high aspect ratio microstructures for mems, Louisiana State University, (2006).
DOI: 10.31390/gradschool_dissertations.1399
Google Scholar
[9]
H. Simchi, A. Simchi, Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution Mater. Sci. Eng., A 507 (2009) 200-206.
DOI: 10.1016/j.msea.2009.01.037
Google Scholar
[10]
M.S. Motta, P.K. Jena, E.A. Brocchi, I. S. Rzano, Characterization of Cu–Al2O3 nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng., C15 Z2001. 175–177.
DOI: 10.1016/s0928-4931(01)00272-7
Google Scholar
[11]
K. Durisinova, J. Durisin, M. Orolinova, Al2O3- dispersion strenghened nanocrystalline copper, Powder Metallurgy Progress, Vol. 6 (2006), No 2.
Google Scholar
[12]
Li Guobin, Sun jibing, GuoQuanmei, Wang Ru, Fabrication of the nanometer Al2O3/Cu composite by internal oxidation, J. Mater. Process. Technol. 170 (2005) 336–340.
DOI: 10.1016/j.jmatprotec.2005.05.011
Google Scholar
[13]
M. Entezarian, R.A. Drew, Direct bonding of copper to aluminum nitride, Mater. Sci. Eng. A 212 (1996) 206.
DOI: 10.1016/0921-5093(96)10190-8
Google Scholar
[14]
L, Nicoleta, researches concerting the elaboration of composite materials with cooper matrix particulate reinforced with alumina, Technical university of CLWJ-NAPOCA Romania, (2010).
Google Scholar
[15]
D. W. Lee, G. H. Ha and B. K. Kim, synthesis of Cu-Al2O3 nano composite powder, Scripta Mater, Vol. 44, pp.2137-2140, (2001).
DOI: 10.1016/s1359-6462(01)00764-3
Google Scholar