Mechanical Properties and Fracture Study of Alumina Dispersion Hardened Copper-Based Nano-Composite at Elevated Temperatures

Article Preview

Abstract:

Alumina dispersion hardened copper-base composite was fabricated by internal oxidation method. The high temperature tensile fracture of Cu-Al2O3 composite was studied and tensile strengths were determined at different temperatures of 600, 680 and 780 °C. Microstructure was investigated by means of optical microscope and field emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS). Results show that, ultimate tensile strength and yield strength of copper alumina nanocomposite decrease slowly with increasing temperature. The yield strength reaches 119 MPa and ultimate tensile strength reaches 132 MPa at 780 °C. Surface fractography shows a dimple-type fracture on the fracture surface of the tensile tests where dimple size increases with increasing testing temperature and in some regions brittle fracture characteristics could be observed in the fracture surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

583-588

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Andjic,M. Korac, Z. Kamberovic, A. Vujovic, Tasic, Analysis of the Properties of a Cu-Al2O3 Sintered System based on UltraFine and Nanocomposite Powders, Sc. Sintering, 39 (2007) 145-152.

DOI: 10.2298/sos0702145a

Google Scholar

[2] Z. Zhang, D. L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Pages 1321-1326 Scripta Mater., 54 (2006) 1321-1326.

DOI: 10.1016/j.scriptamat.2005.12.017

Google Scholar

[3] M. Korac1, Z. Kamberovic, Z. Andjic, M. Filipovic, M. Tasic, Sintered materials based on copper and alumina powders synthesised by a novel method, Sc. Sintering, 42 (2010) 81-90.

DOI: 10.2298/sos1001081k

Google Scholar

[4] D.W. Lee, B.K. Kim, Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application Mater. Lett, 58 (2004) 378– 383.

DOI: 10.1016/s0167-577x(03)00505-6

Google Scholar

[5] M. Korac, Z. Andic, M. Tasic, Z. Kamberovic, Sintering of Cu-Al2O3 nanocomposite powder produced by thermochemical route, J. serb. chem. soc. 72 (11) (2007) 1115-1125.

DOI: 10.2298/jsc0711115k

Google Scholar

[6] G. Q. Yuana, H. F. Jiang, C. Lina, S. J. Liaoa, J. Cryst. Growth, 303 (2007) 400.

Google Scholar

[7] VIŠESLAVA RAJKOVIĆ, DUŠAN BOŽIĆ and MILAN T. JOVANOVIĆ, Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling, J. Serb. Chem. Soc. 74 (5) 595–605 (2009).

DOI: 10.2298/jsc0905595r

Google Scholar

[8] A. L Morales, electrodeposited metal matrix nano-composite s as thin films and high aspect ratio microstructures for mems, Louisiana State University, (2006).

DOI: 10.31390/gradschool_dissertations.1399

Google Scholar

[9] H. Simchi, A. Simchi, Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution Mater. Sci. Eng., A 507 (2009) 200-206.

DOI: 10.1016/j.msea.2009.01.037

Google Scholar

[10] M.S. Motta, P.K. Jena, E.A. Brocchi, I. S. Rzano, Characterization of Cu–Al2O3 nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng., C15 Z2001. 175–177.

DOI: 10.1016/s0928-4931(01)00272-7

Google Scholar

[11] K. Durisinova, J. Durisin, M. Orolinova, Al2O3- dispersion strenghened nanocrystalline copper, Powder Metallurgy Progress, Vol. 6 (2006), No 2.

Google Scholar

[12] Li Guobin, Sun jibing, GuoQuanmei, Wang Ru, Fabrication of the nanometer Al2O3/Cu composite by internal oxidation, J. Mater. Process. Technol. 170 (2005) 336–340.

DOI: 10.1016/j.jmatprotec.2005.05.011

Google Scholar

[13] M. Entezarian, R.A. Drew, Direct bonding of copper to aluminum nitride, Mater. Sci. Eng. A 212 (1996) 206.

DOI: 10.1016/0921-5093(96)10190-8

Google Scholar

[14] L, Nicoleta, researches concerting the elaboration of composite materials with cooper matrix particulate reinforced with alumina, Technical university of CLWJ-NAPOCA Romania, (2010).

Google Scholar

[15] D. W. Lee, G. H. Ha and B. K. Kim, synthesis of Cu-Al2O3 nano composite powder, Scripta Mater, Vol. 44, pp.2137-2140, (2001).

DOI: 10.1016/s1359-6462(01)00764-3

Google Scholar