[1]
Fang Z, Lockwood G. A dual composite of WC–Co. Metall Mater Trans A 1999; 30A: 3231–8.
Google Scholar
[2]
Mitchel BS. An introduction to materials engineering and science. New Jersey: John-Wiley; (2004).
Google Scholar
[3]
Voevodin AA, O'Neill JP, Zabinski JS. Nanocompositetribological coatings for aerospace applications. Surf Coat Technol 1999; 116–119: 36–45.
Google Scholar
[4]
Fang ZZ. Correlation of transverse rupture strength of WC-Co with hardness. Int J Refract Met Hard Mater 2005; 23: 119–27.
Google Scholar
[5]
Upadhyaya GS. Materials science of cemented carbides—an overview. Mater Des 2001; 22: 483–9.
Google Scholar
[6]
Pansare SS, Torres W, Goodwin Jr JG. Ammonia decomposition on tungsten carbide. CatalCommun 2007; 8(4): 649–54.
Google Scholar
[7]
Shanmugam S, Jacob DS, Gedanken A. Solid state synthesis of tungsten carbide nanorods and nanoplatelets by a single-step pyrolysis. J PhysChem B 2005; 109: 19056–9.
DOI: 10.1021/jp0540003
Google Scholar
[8]
Jin G, Xu BS, Wang HD, Li QF, Wei SC. Characterization of WC/Co coatings on metal substrates. Mater Lett 2007; 61: 2454–6.
Google Scholar
[9]
Bolokang S, Banganayia C, Phasha M. Effect of C and milling parameters on the synthesis of WC powders by mechanical alloying. Int J Refract Met Hard Mater 2010; 28: 211–6.
DOI: 10.1016/j.ijrmhm.2009.09.006
Google Scholar
[10]
Kumar A, Singh K, Pandey OP. Reduction of WO3 to nano-WC by thermo-chemical reaction route. Phys E 2009; 41: 677–84.
DOI: 10.1016/j.physe.2008.11.016
Google Scholar
[11]
Wanner S, Hilaire L, Wehrer P, Hindermann JP, Maire G. Obtaining tungsten carbides from tungsten bipyridine complexes via low temperature thermal treatment. ApplCatal A 2000; 203: 55–70.
DOI: 10.1016/s0926-860x(00)00468-3
Google Scholar
[12]
Zheng H, Huang J, Wang W, Ma C. Preparation of nano-crystalline tungsten carbide thin film electrode and its electrocatalytic activity for hydrogen evolution. ElectrochemCommun 2005; 7: 1045–9.
DOI: 10.1016/j.elecom.2005.07.011
Google Scholar
[13]
Nersisyan HH, Won HI, Won CW. Combustion synthesis of WC powder in the presence of alkali salts. Mater Lett 2005; 59: 3950–4.
DOI: 10.1016/j.matlet.2005.07.042
Google Scholar
[14]
Nartowski AM, Parkin IP, MacKenzie M, Craven AJ, MacLeod I. Solid state metathesis routes to transition metal carbides. J Mater Chem 1999; 9: 1275–81.
DOI: 10.1039/a808642g
Google Scholar
[15]
Rieck GD. Tungsten and its compounds. Oxford: Pergamon; (1967).
Google Scholar
[16]
Schwartzkopf P, Kieffer R. Refractory hard metals — borides, carbides, nitrides, and silicides. New York: MacMillan; (1953).
Google Scholar
[17]
Warren A, Bylund A, Ulefjord I. Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int J Refract Met Hard Mater 1996; 14: 345–53.
DOI: 10.1016/s0263-4368(96)00027-3
Google Scholar
[18]
Girandon JM, Devassine P, Lamonier JF, Delannoy L, Lecleveq L, LecleveqG. Synthesis of tungsten carbides by temperature-programmed reaction with CH4–H2 mixtures. influence of the CH4 and hydrogen content in the carburizing mixture. Sold State Chem 2000; 154: 412–26.
DOI: 10.1006/jssc.2000.8859
Google Scholar
[19]
Ross PN, StonehartJr P. Surface characterization of catalytically active tungsten carbide. J Catal 1975; 39: 789.
Google Scholar
[20]
E. J. Rees, C. D. A. Brady, G. T. Burstein, Solid-state Synthesis of Tungsten Carbide from Tungsten Oxide and Carbon, and its Catalysis by nickel, Materials Letters 62 (2008) 1-3.
DOI: 10.1016/j.matlet.2007.04.088
Google Scholar
[21]
J. Ma, S. G. Zhu, Direct solid-state synthesis of tungsten carbide nanoparticles from mechanically activated tungsten oxide and graphite, Int. Journal of Refractory Metals and Hard Materials 28 (2010) 623-627.
DOI: 10.1016/j.ijrmhm.2010.06.004
Google Scholar