[1]
W.M. Meier, D.H. Olson, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins, Atlas of Zeolite Structure Types, Butterworths, London, (1987).
Google Scholar
[2]
M. Stocker, Methanol-to-hydrocarbons: Catalytic materials and their behavior, Microporous Mesoporous Mater. 29 (1999) 3.
Google Scholar
[3]
S. Wilson, P. Barger, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins, Microporous Mesoporous Mater. 29 (1999) 117.
DOI: 10.1016/s1387-1811(98)00325-4
Google Scholar
[4]
Yu, M.; Li, S., Falconer, J. L., Noble, R. D., Reversible H2 storage using a SAPO-34 zeolite layer, Microporous Mesoporous Mater. 2008, 110, 579.
DOI: 10.1016/j.micromeso.2007.06.017
Google Scholar
[5]
Hong, M., Li, S., Falconer, J. L., Noble, R. D., Hydrogen purification using a SAPO-34 membrane, J. Membr. Sci. 2008, 307, 277.
DOI: 10.1016/j.memsci.2007.09.031
Google Scholar
[6]
B. Valle, A. Alonso, A. Atutxa, A.G. Gayubo, Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process, J. Bilbao, Catal. Today 106 (2005) 118–122.
DOI: 10.1016/j.cattod.2005.07.132
Google Scholar
[7]
M. Bjorgen, U. Olsbye, D. Petersen, S. Kolboe, The methanol-to-hydrocarbons reaction: Insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta, J. Catal. 221 (2004) 1–10.
DOI: 10.1016/s0021-9517(03)00284-7
Google Scholar
[8]
Q. Zhu, J.N. Kondo, R. Ohnuma, Y. Kubota, M. Yamaguchi, T. Tatsumi, The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites, Micropor. Mesopor. Mater. 112 (2008) 153–161.
DOI: 10.1016/j.micromeso.2007.09.026
Google Scholar
[9]
J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, R. Zhai, Construction of recombinant adenoviral vector Ad-CMV-hTGFbeta1 for reversion of intervertebral disc degeneration by gene transfer, Microporous Mesoporous Mater. 53 (2002) 97.
Google Scholar
[10]
O.B. Vistad, D.E. Akporiaye, F. Taulelle, K.P. Lillerud, In situ NMR of SAPO-34 crystallization, Chem. Mater. 15 (2003) 1639.
DOI: 10.1021/cm021317w
Google Scholar
[11]
Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc. 1984, 106, 6092.
DOI: 10.1021/ja00332a063
Google Scholar
[12]
Vistad, Ø. B., Akporiaye, D. E., Taulelle, F., Lillerud, K. P., Morpholine, an in Situ 13C NMR pH Meter for Hydrothermal Crystallogenesis of SAPO-34, Chem. Mater. 2003, 15, 1650.
DOI: 10.1021/cm021318o
Google Scholar
[13]
Dumitriua, E., Azzouza, A., Huleaa, V., Lutica, D., Kesslerb, H, Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent, Microporous Mater. 1997, 10, 1.
DOI: 10.1016/s0927-6513(96)00107-1
Google Scholar
[14]
Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S., Liu, Z., Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals, Microporous Mesoporous Mater. 2008, 114, 416.
DOI: 10.1016/j.micromeso.2008.01.030
Google Scholar
[15]
Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S., Liu, Z., Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template, Microporous Mesoporous Mater. 2008, 111, 143.
DOI: 10.1016/j.micromeso.2007.07.023
Google Scholar
[16]
Wei, Y., He, Y., Zhang, D., Xu, L., Meng, S., Liu, Z., Su, B. L., Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins, Microporous Mesoporous Mater. 2006, 90, 188.
DOI: 10.1016/j.micromeso.2005.10.042
Google Scholar
[17]
Zhou, H., Wang, Y., Wei, F., Wang, D., Wang, Z., In situ synthesis of SAPO-34 crystals grown onto α-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins, Appl. Catal., A 2008, 341, 112.
DOI: 10.1016/j.apcata.2008.02.030
Google Scholar
[18]
H. van Heyden, S. Mintova, T. Bein, Nanosized SAPO-34 synthesized from colloidal solutions, Chem. Mater. 20 (2008) 2956–2963.
DOI: 10.1021/cm703541w
Google Scholar
[19]
Yao, J., Wang, H., Ringer, S. P., Chan, K. Y., Zhang, L., Xu, N., Growth of SAPO-34 in polymer hydrogels through vapor-phase transport, Microporous Mesoporous Mater. 2005, 85, 267.
DOI: 10.1016/j.micromeso.2005.06.026
Google Scholar
[20]
Yao, J., Zeng, C., Zhang, L., Xu, N., Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs, Mater. Chem. Phys. 2008, 112, 637.
DOI: 10.1016/j.matchemphys.2008.06.019
Google Scholar
[21]
Rivera-Ramos, M. E., Ruiz-Mercado, G. J., Hernandez-Maldonado, Separation of CO2 from Light Gas Mixtures using Ion-Exchanged Silicoaluminophosphate Nanoporous Sorbents, A. J. Ind. Eng. Chem. Res. 2008, 47, 5602.
DOI: 10.1021/ie071309v
Google Scholar
[22]
Jhung, S. H., Chang, J. S., Hwang, J. S., & Park, S. E., Selective formation of SAPO- 5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 2003, 64, 33–39.
DOI: 10.1016/s1387-1811(03)00501-8
Google Scholar
[23]
Burton, A. W., Ong, k., Rea, t., Chan, I. Y., On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Microporous and Mesoporous Materials 2009, 117(1–2) 75-90.
DOI: 10.1016/j.micromeso.2008.06.010
Google Scholar