Synthesis and Modification of SAPO-34 Nanoparticles by Incorporation of Metal Ions Using Rapid High Temperature Method

Article Preview

Abstract:

Considering studies done on the result of methanol conversion over SAP-34 molecular sieve, it is understood that increase of selectivity is ascribed to the increase of acidity in acid sites which is a result of incorporation of metal in crystal structure and decrease of crystal size. In this study, metal incorporation in the SAPO-34 structure leaded to increase of acid sites concentration but did not affect the acid strength distribution. The catalytic performance of the SAPO-34 nanoparticles in the MTO reaction varied according to their crystallite size. Decreasing particle size results in larger increase of external surface area and shorter diffusion path, both cause reduction in mass and heat transfer resistances in catalysis and sorption. In this work a rapid high-temperature synthesis method was developed to synthesis uniform nanoparticles of SAPO 34 zeolite with high crystallinity and metal was successfully incorporated in crystal structure. In order to investigate the effects of temperature and synthesis time on purity and crystallinity of the synthesized samples, the crystallization temperature was increased from 350 to 550 K while the synthesis time was decreased from 24 h to 45 min. The samples were characterized by XRD, BET and SEM analysis techniques. It was found that by using high temperature and short synthesis time the particle size decreased and the metal was properly incorporated into the crystal structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-631

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.M. Meier, D.H. Olson, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins, Atlas of Zeolite Structure Types, Butterworths, London, (1987).

Google Scholar

[2] M. Stocker, Methanol-to-hydrocarbons: Catalytic materials and their behavior, Microporous Mesoporous Mater. 29 (1999) 3.

Google Scholar

[3] S. Wilson, P. Barger, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins, Microporous Mesoporous Mater. 29 (1999) 117.

DOI: 10.1016/s1387-1811(98)00325-4

Google Scholar

[4] Yu, M.; Li, S., Falconer, J. L., Noble, R. D., Reversible H2 storage using a SAPO-34 zeolite layer, Microporous Mesoporous Mater. 2008, 110, 579.

DOI: 10.1016/j.micromeso.2007.06.017

Google Scholar

[5] Hong, M., Li, S., Falconer, J. L., Noble, R. D., Hydrogen purification using a SAPO-34 membrane, J. Membr. Sci. 2008, 307, 277.

DOI: 10.1016/j.memsci.2007.09.031

Google Scholar

[6] B. Valle, A. Alonso, A. Atutxa, A.G. Gayubo, Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process, J. Bilbao, Catal. Today 106 (2005) 118–122.

DOI: 10.1016/j.cattod.2005.07.132

Google Scholar

[7] M. Bjorgen, U. Olsbye, D. Petersen, S. Kolboe, The methanol-to-hydrocarbons reaction: Insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta, J. Catal. 221 (2004) 1–10.

DOI: 10.1016/s0021-9517(03)00284-7

Google Scholar

[8] Q. Zhu, J.N. Kondo, R. Ohnuma, Y. Kubota, M. Yamaguchi, T. Tatsumi, The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites, Micropor. Mesopor. Mater. 112 (2008) 153–161.

DOI: 10.1016/j.micromeso.2007.09.026

Google Scholar

[9] J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, R. Zhai, Construction of recombinant adenoviral vector Ad-CMV-hTGFbeta1 for reversion of intervertebral disc degeneration by gene transfer, Microporous Mesoporous Mater. 53 (2002) 97.

Google Scholar

[10] O.B. Vistad, D.E. Akporiaye, F. Taulelle, K.P. Lillerud, In situ NMR of SAPO-34 crystallization, Chem. Mater. 15 (2003) 1639.

DOI: 10.1021/cm021317w

Google Scholar

[11] Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc. 1984, 106, 6092.

DOI: 10.1021/ja00332a063

Google Scholar

[12] Vistad, Ø. B., Akporiaye, D. E., Taulelle, F., Lillerud, K. P., Morpholine, an in Situ 13C NMR pH Meter for Hydrothermal Crystallogenesis of SAPO-34, Chem. Mater. 2003, 15, 1650.

DOI: 10.1021/cm021318o

Google Scholar

[13] Dumitriua, E., Azzouza, A., Huleaa, V., Lutica, D., Kesslerb, H, Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent, Microporous Mater. 1997, 10, 1.

DOI: 10.1016/s0927-6513(96)00107-1

Google Scholar

[14] Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S., Liu, Z., Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals, Microporous Mesoporous Mater. 2008, 114, 416.

DOI: 10.1016/j.micromeso.2008.01.030

Google Scholar

[15] Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S., Liu, Z., Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template, Microporous Mesoporous Mater. 2008, 111, 143.

DOI: 10.1016/j.micromeso.2007.07.023

Google Scholar

[16] Wei, Y., He, Y., Zhang, D., Xu, L., Meng, S., Liu, Z., Su, B. L., Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins, Microporous Mesoporous Mater. 2006, 90, 188.

DOI: 10.1016/j.micromeso.2005.10.042

Google Scholar

[17] Zhou, H., Wang, Y., Wei, F., Wang, D., Wang, Z., In situ synthesis of SAPO-34 crystals grown onto α-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins, Appl. Catal., A 2008, 341, 112.

DOI: 10.1016/j.apcata.2008.02.030

Google Scholar

[18] H. van Heyden, S. Mintova, T. Bein, Nanosized SAPO-34 synthesized from colloidal solutions, Chem. Mater. 20 (2008) 2956–2963.

DOI: 10.1021/cm703541w

Google Scholar

[19] Yao, J., Wang, H., Ringer, S. P., Chan, K. Y., Zhang, L., Xu, N., Growth of SAPO-34 in polymer hydrogels through vapor-phase transport, Microporous Mesoporous Mater. 2005, 85, 267.

DOI: 10.1016/j.micromeso.2005.06.026

Google Scholar

[20] Yao, J., Zeng, C., Zhang, L., Xu, N., Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs, Mater. Chem. Phys. 2008, 112, 637.

DOI: 10.1016/j.matchemphys.2008.06.019

Google Scholar

[21] Rivera-Ramos, M. E., Ruiz-Mercado, G. J., Hernandez-Maldonado, Separation of CO2 from Light Gas Mixtures using Ion-Exchanged Silicoaluminophosphate Nanoporous Sorbents, A. J. Ind. Eng. Chem. Res. 2008, 47, 5602.

DOI: 10.1021/ie071309v

Google Scholar

[22] Jhung, S. H., Chang, J. S., Hwang, J. S., & Park, S. E., Selective formation of SAPO- 5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 2003, 64, 33–39.

DOI: 10.1016/s1387-1811(03)00501-8

Google Scholar

[23] Burton, A. W., Ong, k., Rea, t., Chan, I. Y., On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Microporous and Mesoporous Materials 2009, 117(1–2) 75-90.

DOI: 10.1016/j.micromeso.2008.06.010

Google Scholar