Effect of Barrier Layer on Fabrication of FePt Nanowires by Electrodeposition into Nanoporous Alumina Templates

Article Preview

Abstract:

It is well known that the nanoporous aluminum oxide film is an electrical insulator. In addition the homogeneity of electrodeposited nanowire arrays in nanoporous alumina templates increases drastically with the usage of AC electrodeposition in comparison to DC electrodeposition. This is revealing of the effect of dielectric properties of alumina that is used as template for electrodeposition. In this work integrated nanowire arrays of FePt alloys were successfully fabricated by alternating current electrodeposition on nanoporous alumina; also we characterize the nanoporous alumina membrane that is used as a template for FePt nanowire electrodeposition using EIS allowing the electrochemical impedance contributions from the barrier layer, nanoporous structure, and electrolyte solution resistance to be calculated through the use of an equivalent circuit model. The impedance spectra of the porous film prepared under different anodization conditions were measured. The data is attained at open circuit potential over a frequency range between 1 Hz to 100 KHz with an AC potential amplitude of 10 mV. As our result demonstrates the resistance of the bariyer layer decreases with the anodization temperature then the electrochemical process of FePt nanowires at template which fabricated on low anodization temperature will be difficult due to the higher resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

707-711

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Park, J. S. Yoo, electrochemical impedance spectroscopy for better electrochemical measurements, Anal. Chem, 75 (2003) 455 A-461 A.

DOI: 10.1021/ac0313973

Google Scholar

[2] A. Lasia, Electrochemical impedance spectroscopy and its applications, in: Modern aspects of electrochemistry, Springer, 2002, pp.143-248.

DOI: 10.1007/0-306-46916-2_2

Google Scholar

[3] E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, (2005).

Google Scholar

[4] M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, (2011).

Google Scholar

[5] J. Hitzig, K. Jüttner, W. Lorenz, W. Paatsch, Corrosion science, 24 (1984) 945-952.

DOI: 10.1016/0010-938x(84)90115-x

Google Scholar

[6] F. Debuyck, L. Lemaitre, M. Moors, A. Van Peteghem, E. Wettinck, L. Weyten, Surface and coatings technology, 34 (1988) 311-318.

DOI: 10.1016/0257-8972(88)90121-1

Google Scholar

[7] H. J. Oh, K. W. Jang, C. S. Chi, Impedance characteristics of oxide layers on aluminium Bull. Korean Chem. Soc, 20 (1999) 1341.

Google Scholar

[8] A. Foyet, A. Hauser, W. Schäfer, Double template electrochemical deposition and characterization of NiCo and NiCu alloys nanoparticles and nanofilms, J. Solid State Electrochem., 12 (2008) 47-55.

DOI: 10.1007/s10008-007-0332-2

Google Scholar

[9] P. C. Chen, Y. M. Chang, P. W. Wu, Y. F. Chiu, Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte, Int. J. Hydrogen Energy , 34 (2009) 6596-6602.

DOI: 10.1016/j.ijhydene.2009.05.126

Google Scholar

[10] B. Benfedda, L. Hamadou, N. Benbrahim, A. Kadri, E. Chainet, F. Charlot, Electrochemical Impedance Investigation of Anodic Alumina Barrier Layer, J. Electrochem. Soc., 159 (2012) C372-C381.

DOI: 10.1149/2.068208jes

Google Scholar

[11] Y. Huang, H. Okumura, G. Hadjipanayis, D. Weller, CoPt and FePt nanowires by electrodeposition, J. Appl. Phys., 91 (2002) 6869-6871.

DOI: 10.1063/1.1447524

Google Scholar

[12] S. Chu, S. Inoue, K. Wada, K. Kurashima, Fabrication of integrated arrays of ultrahigh density magnetic nanowires on glass by anodization and electrodeposition, Electrochim. Acta, 51 (2005) 820-826.

DOI: 10.1016/j.electacta.2005.03.075

Google Scholar

[13] S. Ichihara, M. Ueda, T. Den, Electrodeposition of FePt magnetic material and embedding into alumina-nanoholes, IEEE Trans. Magn., 41 (2005) 3349-3351.

DOI: 10.1109/tmag.2005.854704

Google Scholar

[14] Y. Pang, B. Zhang, J. Zhao, J. Wang, Y. Wu, Synthesis and magnetic properties of FePt- Fe3Pt nanowire arrays embedded in anodic alumina membranes, Integr. Ferroelectrics., 135 (2012) 77-81.

DOI: 10.1080/10584587.2012.685406

Google Scholar

[15] F. Li, L. Ren, Fabrication and magnetic properties of FePt3 nanowire arrays, phys. status solidi (a), 193 (2002) 196-201.

DOI: 10.1002/1521-396x(200209)193:1<196::aid-pssa196>3.0.co;2-1

Google Scholar

[16] J. H. Gao, Q. F. Zhan, W. He, D. L. Sun, Z. H. Cheng, Synthesis and magnetic properties of Fe3Pt nanowire arrays fabricated by electrodeposition, Appl. Phys. Lett., 86 (2005) 232506-232506-232503.

DOI: 10.1063/1.1944210

Google Scholar

[17] H. Wang, Y.C. Wu, L. Zhang, X. Hu, Fabrication and magnetic properties of FePt multilayered nanowires, Appl. Phys. Lett., 89 (2006) 232508-232508-232503.

DOI: 10.1063/1.2402888

Google Scholar

[18] J. Xu, Z. Zhang, B. Ma, Q. Jin, Compositional control of FexPt(1-x) nanowires by electrodeposition. J. Appl. phys., 109 (2011) 07B704-707B704-703.

Google Scholar