Effect of Mn Dopant on Lattice Parameters and Band Gap Energy of Semiconductor ZnO Nanoparticles

Article Preview

Abstract:

ZnO belongs to the II-VI semiconductor group with a direct band-gap of 3.2-3.37 eV in 300K and a high exciton binding energy of 60 meV. It has good transparency, high electron mobility, wide, and strong room-temperature luminescence. These properties have many applications in a wide area of emerging applications. Doping ZnO with the transition metals gives it magnetic property at room temperature hence making it multifunctional material, i.e. coexistence of magnetic, semiconducting and optical properties. The samples can be synthesized in the bulk, thin film, and nanoforms which show a wide range of ferromagnetism properties. Ferromagnetic semiconductors are important materials for spintronic and nonvolatile memory storage applications. Doping of transition metal elements into ZnO offers a feasible means of tailoring the band gap to use it as light emitters and UV detector. As there are controversial on the energy gap value due to change of lattice parameters we have synthesized Mn-doped ZnO nanoparticles by co-precipitation method with different concentrations to study the effect of lattice parameters changes on gap energy. The doped samples were studied by XRD, SEM, FT-IR., and UV-Vis. The XRD patterns confirm doping of Mn into ZnO structure. As Mn concentrations increases the peak due to of Mn impurity in FT-IR spectra becomes more pronounces hence confirming concentrations variation. We find from UV-Vis spectra that the gap energy due to doping concentration increases due to the Goldschmidt-Pauling rule this increase depends on dopant concentrations and increases as impurity amount increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-789

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xian-Yang Feng, Zhe Wang, Chang-Wen Zhang, and Pei-Ji Wang, Electronic Structure and Energy Band of IIIA Doped Group ZnO Nanosheets, Hindawi Publishing Corporation Journal of Nanomaterials Volume 2013, Article ID 181979, 6 pages.

DOI: 10.1155/2013/181979

Google Scholar

[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, A Spin-Based Electronics Vision for the Future, Science 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[3] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature 402 (1999) 790-792.

DOI: 10.1038/45509

Google Scholar

[4] Dana A. Schwartz, Kevin R. Kittilstved, and Daniel R. Gamelina, Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots, Appl. Phys. Lett. 85 (2004) 1395- 1397.

DOI: 10.1063/1.1785872

Google Scholar

[5] J. K. Furdyna and J. Kossut, in Semiconductors and Semimetals, edited by J. K. Furdyna and J. Kossut (Academic, New York, 1988).

Google Scholar

[6] K. Sato and H. Katayama-Yoshida, Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide, Physica B 308 (2001) 904-907.

DOI: 10.1016/s0921-4526(01)00834-1

Google Scholar

[7] K. Ueda, H. Tabata, and T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films Appl. Phys. Lett. 79 (2001) 988-990.

DOI: 10.1063/1.1384478

Google Scholar

[8] Y. M. Cho, W. K. Choo, H. Kim, D. Kim, and Y. Ihm, Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x(Co0. 5Fe0. 5)xO thin films, Appl. Phys. Lett. 80, 3358, (2002) 3358 (3 pages).

DOI: 10.1063/1.1478146

Google Scholar

[9] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, Nat. Mater 2 (2003) 673-677.

DOI: 10.1038/nmat984

Google Scholar

[10] N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, and D. R. Gamelin, Synthesis of Colloidal Mn2+: ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline Thin Films, J. Am. Chem. Soc. 126 (2004) 9387–9398.

DOI: 10.1002/chin.200442011

Google Scholar

[11] K. Sharda, Jayanthi, Santa Chawla, Synthesis of Mn doped ZnO nanoparticles with biocompatible capping, Appl. Surf. Sci, 256 (2010) 2630–2635.

DOI: 10.1016/j.apsusc.2009.11.008

Google Scholar

[12] V. D. Mote1, Y. Purushotham, and B. N. Dole1, Structural and morphological studies on Mn substituted ZnO nanometer-sized crystals, Cryst. Res. Technol. 46 (2011) 705-710.

DOI: 10.1002/crat.201100107

Google Scholar

[13] Yao-Ming Hao, Shi-Yun Lou, Shao-Min Zhou, Rui-Jian Yuan, Gong-Yu Zhu and Ning Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles, doi: 10. 1186/1556-276X-7-100, Nanoscale Research Letters, (2012).

DOI: 10.1186/1556-276x-7-100

Google Scholar

[14] M. Ebrahimizadeh Abrishami, A. Kompany, S. M. Hosseini, N. Ghajari Bardar, Preparing undoped and Mn-doped ZnO nanoparticles: a comparison between sol–gel and gel-combustion methods, J Sol-Gel Sci Technol 62 ( 2012) 153–159.

DOI: 10.1007/s10971-012-2701-2

Google Scholar

[15] S. J. Parikh, J. Chorover, FTIR Spectroscopic Study of Biogenic Mn-Oxide Formation by Pseudomonas putida GB-1, Geomicrobiol J. 22 (2005) 207-218.

DOI: 10.1080/01490450590947724

Google Scholar

[16] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, Journal of Hazardous Materials 156 (2008) 194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[17] J. W. Li, L. W. Yang, Z. F. Zhou, Paul K. Chu, X. H. Wang, J. Zhou, L. T. Li, and Chang Q. Sun, Bandgap Modulation in ZnO by Size, Pressure, and Temperature, J. Phys. Chem. C 114 (2010) 13370–13374.

DOI: 10.1021/jp104204y

Google Scholar

[18] X. J. Liu, Z. F. Zhou, L. W. Yang, J. W. Li, G. F. Xie, S. Y. Fu, and C. Q. Sun, Correlation and size dependence of the lattice strain, binding energy, elastic modulus, and thermal stability for Au and Ag nanostructures, J. Appl. Phys., 109 (2011).

DOI: 10.1063/1.3569743

Google Scholar