On the Vibrational Behavior of Piezoelectric Nano-Beams

Article Preview

Abstract:

In this article surface effects are considered to study the electromechanical coupling behavior of piezoelectric nanobeams with the non-local Euler-Bernoulli beam theory. The equation of motion for piezoelectric nanobeams with considering both surface effect and nonlocal effect is achieved and exact term for natural frequencies is derived for simply supported conditions. In the following the axial load effect on the natural frequencies piezoelectric nanobeams has been studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

790-794

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Song, J. Zhou, Z. L. Wang, Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment, Nano Lett. 6(8) (2006) 1656–1662.

DOI: 10.1021/nl060820v

Google Scholar

[2] Z.L. Wang, Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, J. Science. 312 (2006), 242-246.

DOI: 10.1126/science.1124005

Google Scholar

[3] X. D. Wang, J.H. Song, J. Liu, Z.L. Wang, Microfibre–nanowire hybrid structure for energy scavenging, J. Nature 451(2008), 809-813.

DOI: 10.1038/nature06601

Google Scholar

[4] Y.F. Lin, J.H. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect, J. Advanced Materials 20(2008) 3127–3130.

DOI: 10.1002/adma.200703236

Google Scholar

[5] J. Zhou, P. Fei, Y.F. Gao, Y. D. Gu, J. Liu, G. Bao, Z.L. Wang, Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires, Nano Lett. 8(2008) 3973–3977.

DOI: 10.1021/nl802497e

Google Scholar

[6] H.G. Craighead, Nanoelectromechanical systems, J. Science 290(2000) 1532–1535.

Google Scholar

[7] M.E. Gurtin, X. Markenscoff, R.N. Thurston, Effect of surface stress on the natural frequency of thin crystals, Appl. Phys. Lett. 29(1976) 529-530.

DOI: 10.1063/1.89173

Google Scholar

[8] B. Gheshlaghi, S.M. Hasheminejad, Vibration analysis of piezoelectric nanowires with surface and small scale effects, Current Appl. Phys. 12(2012) 1096-1099.

DOI: 10.1016/j.cap.2012.01.014

Google Scholar

[9] Z. Yan, L.Y. Jiang, The vibrational and buckling behaviors of piezoelectric nanobeams with surface Effects,J. Nanotechnology 22 (2011) 245703.

DOI: 10.1088/0957-4484/22/24/245703

Google Scholar

[10] A. Milazzo, C. Orlando, A. Alaimo, Analytical solution for the magneto-electroelastic bimorph beam forced vibrations problem, J. Smart Mater. Struct. 18 (2009) 085012-085018.

DOI: 10.1088/0964-1726/18/8/085012

Google Scholar

[11] S.V. Gopinathan, V.V. Varadan, V.K. Karadan, A review and critique of theories for piezoelectric laminates, Smart Mater. Struct. 9 (2000) 24-28.

DOI: 10.1088/0964-1726/9/1/304

Google Scholar

[12] J.N. Reddy, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008) 023511-023526.

Google Scholar

[13] B. Bar On, E. Altus, E.B. Tadmor, Surface effects in non-uniform nanobeams: continuum vs. Atomistic modeling, Int. J. Solids Struct. 47 (2010) 1243-1252.

DOI: 10.1016/j.ijsolstr.2010.01.010

Google Scholar

[14] S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, (1961).

Google Scholar

[15] G.Y. Huang, S.W. Yu, Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring, 243(2006) 22–24.

Google Scholar