Microstructural and Magnetic Properties of Nanostructured Fe65Co35 Powders Prepared by Mechanical Alloying

Article Preview

Abstract:

Nanostructured Fe65Co35 alloy powders were fabricated by mechanical alloying in an attritor mill with different milling times. The milling process carried out in speed of 350 rpm, with 20:1 ball to powder weight ratio and under argon protective atmosphere. A continuous cooling system applied to avoid increasing temperature during the milling. The effect of milling time on structural and magnetic properties investigated by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer. According to the obtained results, nanostructured Fe65Co35 solid solution powders resulted with an average particle size of 400 nm and crystallite size of 6.8 nm by milling for 20 hours. With increasing the milling time, the lattice parameter decreased and the lattice strain increased for Fe65Co35 powders. The maximum saturation magnetization with 1311 emu/cc value and the minimum coercivity with 22 Oe value occurs after milling for 15 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

778-783

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sourmail, Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties, Prog. Mater. Sci. 50 (2005) 816-880.

DOI: 10.1016/j.pmatsci.2005.04.001

Google Scholar

[2] M. Delshad Chermahini and H. Shokrollahi, Milling and subsequent thermal annealing effects on the microstructural and magnetic properties of nanostructured Fe90Co10 and Fe65Co35 powders, J. Alloy. Compd. 480 (2009) 161–166.

DOI: 10.1016/j.jallcom.2009.01.088

Google Scholar

[3] Y. Liu, J. Zhang, L. Yu, G. Jia, C. Jing and S. Cao, Magnetic properties of nanocrystalline Fe–Co alloys by high-energy milling, J. Alloy. Compd. 377 (2004) 202-206.

DOI: 10.1016/j.jallcom.2003.12.037

Google Scholar

[4] H. Moumeni, S. Alleg and J.M. Greneche, Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying, J. Alloy. Compd. 386 (2005) 12-19.

DOI: 10.1016/j.jallcom.2004.05.017

Google Scholar

[5] Q. Zeng, I. Baker, V. McCreary and Zh. Yan, Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders, J. Magn. Magn. Mater. 318 (2007) 28–38.

DOI: 10.1016/j.jmmm.2007.04.037

Google Scholar

[6] S.P. Gubin, Magnetic Nanoparticles, WILEY-VCH, Weinheim, (2009).

Google Scholar

[7] M. Delshad Chermahini, S. Sharafi, H. Shokrollahi, M. Zandrahimi and A. Shafyei, The evolution of heating rate on the microstructural and magnetic properties of milled nanostructured Fe1-xCox (x = 0. 2, 0. 3, 0. 4, 0. 5 and 0. 7) powders, J. Alloy. Compd. 484 (2009).

DOI: 10.1016/j.jallcom.2009.05.055

Google Scholar

[8] H.F. Li and R.V. Ramanujan, Synthesis of Fe-Co Based Nanomagnetic Materials, Trans. India. Inst. Met. 58 (2005) 965-970.

Google Scholar

[9] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-31.

Google Scholar

[10] B. Zuo and T. Sritharan, Ordering and grain growth in nanocrystalline Fe75Si25 alloy, Acta. Mater. 53 (2005) 1233-1239.

DOI: 10.1016/j.actamat.2004.11.017

Google Scholar

[11] H. Shokrollahi, K. Janghorban, R. Koohkan and Sh. Sharafi, Preparation of nanocrystalline Fe–Ni powders by mechanical alloying used in soft magnetic composites, J. Magn. Magn. Mater. 320 (2008) 1089-1092.

DOI: 10.1016/j.jmmm.2007.10.033

Google Scholar

[12] H. Shokrollahi and K. Janghorban, Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites, J. Magn. Magn. Mater. 317 (2007) 61-67.

DOI: 10.1016/j.jmmm.2007.04.011

Google Scholar

[13] N. Poudyal, Ch. Rong, Y. Zhang, D. Wanga, M.J. Kramer, R.J. Hebertc and J. Ping Liu, Self-nanoscaling in FeCo alloys prepared via severe plastic deformation, J. Alloy. Compd. 521 (2012) 55-59.

DOI: 10.1016/j.jallcom.2012.01.026

Google Scholar

[14] M. Tavakoli, H. Shokrollahi, L. Karimi and K. Janghorban, Investigation of structural, microstructural and magnetic properties of mechanically alloyed nanostructured (Fe50Co50)100−xMox(x =25, 35) powders, Powder. Technol. 234 (2013) 13–18.

DOI: 10.1016/j.powtec.2012.09.013

Google Scholar

[15] E. Lifshin, X-ray Characterization of Materials, WILEY-VCH Verlag GmbH, (1999).

Google Scholar

[16] B.D. Cullity, Elements of X-ray Diffraction, third edition,  Addison-Wesley, (2001).

Google Scholar

[17] C. Suryanarayana, M. Grant Norton, X- Ray Diffraction a Practical approach, Plenum press, New York and London, (1998).

Google Scholar

[18] Y. D Kim, J. Y Chung, J. Kim and H. Jeon, Formation of nanocrystalline Fe–Co powders produced by mechanical alloying, Mat. Sci. Eng. A-Struct. 291 (2000) 17-21.

DOI: 10.1016/s0921-5093(00)00982-5

Google Scholar

[19] H. Moumeni, S. Alleg, C. Djebbari, F. Z. Bentayeb and J. M. Grenèche, Synthesis and characterisation of nanostructured FeCo alloys, J. Mater. Sci. 39 (2004) 5441-5443.

DOI: 10.1023/b:jmsc.0000039262.37788.b7

Google Scholar

[20] G. González, D. Oleszak, A. Sagarzazu, R. Villalba and L. D'Onofrio, Mechanical Alloying of FeCoCr, Rev. Lat. Am. Metal. Mat. 31 (2011) 64-70.

Google Scholar

[21] H. A. Baghbaderani, S. Sharafi and M. D. Chermahini, Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying, Powder. Technol. 230 (2012) 241–246.

DOI: 10.1016/j.powtec.2012.07.039

Google Scholar

[22] M. McHenry, M. Willard and D. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets, Prog. Mater. Sci. 44 (1999) 291-433.

DOI: 10.1016/s0079-6425(99)00002-x

Google Scholar