Effects of Grain Size on Micro Backward Extrusion of Copper

Article Preview

Abstract:

This study investigates the effects of grain size on the micro backward extrusion of copper cups. An equal channel angular extrusion (ECAE) technique was applied to refine the grain size in copper. Commercial available copper was annealed, deformed by six-pass ECAE at room temperature and then heat treated to obtain a microstructure with a grain size of about 4μm. Microstructure was examined and mechanical properties including hardness and stress-strain relationship were also investigated. The processed copper was then used in a micro backward extrusion of cups with the diameter of 3 mm and the wall thickness of 0.1 mm. The extruded cups were compared with those resulting from the coppers with larger grain size prepared by different heat treated processes. This study shows that the quality of the micro extruded cup increases as the grain size decreases. By using the refine-grained coppers for the micro backward extrusion, the cups with even rim height and uniform wall thickness can be easily produced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

1092-1098

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel: CIRP Annals-Manufacturing Technology Vol. 50 (2001) pp.445-462.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[2] F. Vollertsen, H. Schulze Niehoff, Z. Hu: International Journal of Machine Tools and Manufacture Vol. 46 (2006) pp.1172-1179.

DOI: 10.1016/j.ijmachtools.2006.01.033

Google Scholar

[3] Y. Saotome, T. Zhang, A. Inoue: Mater. Res. Soc. Proc. Vol. 554 (1999) pp.385-390.

Google Scholar

[4] F. Vollertsen, Z. Hu, H. Niehoff, C. Theiler: Journal of Materials Processing Tech. Vol. 151 (2004) pp.70-79.

Google Scholar

[5] U. Engel, R. Eckstein: Journal of Materials Processing Tech. Vol. 125 (2002) pp.35-44.

Google Scholar

[6] J. Gau, C. Principe, J. Wang: Journal of Materials Processing Tech. Vol. 184 (2007) pp.42-46.

Google Scholar

[7] Y. Saotome, S. Miwa, T. Zhang, A. Inoue: Journal of Materials Processing Tech. Vol. 113 (2001) pp.64-69.

Google Scholar

[8] V. Segal: Material Science Engineering A Vol. 271 (1999) pp.322-333.

Google Scholar

[9] Z. Horita, T. Fujinami, M. Nemoto, T. Langdon: Journal of Materials Processing Tech. Vol. 117 (2001) pp.288-292.

Google Scholar

[10] V. Segal: Materials science & engineering. A, Structural materials: properties, microstructure and processing Vol. 197 (1995) pp.157-164.

Google Scholar

[11] S. Erbel: Met. Technol. Vol. 12 (1979) pp.482-486.

Google Scholar

[12] A. Korbel, M. Richert: Acta Metallurgica Vol. 33 (1985) p.1971-(1978).

Google Scholar

[13] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta materialia Vol. 47 (1999) pp.579-583.

Google Scholar

[14] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. Hong: Scripta Mater. Vol. 39 (1998) pp.1221-1227.

Google Scholar

[15] G. Salishchev, O. Valiakhmetov, R. Galeev: J. Material Sci. Vol. 28 (1993) pp.2898-2902.

Google Scholar

[16] R. Imayev, V. Imayev, G. Salishchev: J. Mater. Sci. Vol. 27 (1998) pp.4465-4471.

DOI: 10.1007/bf00541580

Google Scholar

[17] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. Langdon: Mater. Sci. Eng. Vol. A257 (1998) pp.328-332.

Google Scholar

[18] Y. Iwahashi, Z. Horita, M. Nemoto, T. Langdon: Acta materialia Vol. 46 (1998) pp.3317-3331.

DOI: 10.1016/s1359-6454(97)00494-1

Google Scholar