Potential of Size Reduction of Flat-Plate Solar Collectors when Applying Al2O3 Nanofluid

Article Preview

Abstract:

The source of fossil fuel is decreasing. The price increased rapidly. Population and demand of energy increased significantly over the years. Carbon pollution and global warming are becoming major issues. The best way to overcome this problem is by changing to renewable source of energy. One of it is solar thermal energy. However, a solar technology is currently still expensive, low in efficiency and takes up a lot of space. Nanofluid is recognized as a solution to overcome this problem. Due to the high thermal conductivity of nanofluids, the thermal efficiency of a solar collector can be increased and thus decreasing the size of the system. This paper analyzes the efficiency of using the Al2O3 nanofluid as absorbing medium in flat-plate solar collector and estimated the potential of size reduction. When applying the same output temperature of Al2O3 nanofluid as with water, it can be observed that the collectors size can be reduced up to 24% of its original size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mekhilef, A. Safari, W.E.S. Mustaffa, R. Saidur, R. Omar, and M.A.A. Younis, Solar energy in Malaysia: Current state and prospects, Renewable and Sustainable Energy Rev. 16 (2012) 386-396.

DOI: 10.1016/j.rser.2011.08.003

Google Scholar

[2] T. Yousefi, E. Shojaeizadeh, F. Veysi, and S. Zinadini, An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector, Sol. Energy 86 (2012) 771-779.

DOI: 10.1016/j.solener.2011.12.003

Google Scholar

[3] T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors, Exp. Therm Fluid Sci. 39 (2012) 207-212.

DOI: 10.1016/j.expthermflusci.2012.01.025

Google Scholar

[4] T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy 39 (2012) 293-298.

DOI: 10.1016/j.renene.2011.08.056

Google Scholar

[5] E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, Potential of carbon nanohorn-based suspensions for solar thermal collectors, Sol. Energy Mater. Sol. Cells 95 (2011) 2994-3000.

DOI: 10.1016/j.solmat.2011.06.011

Google Scholar

[6] R. Saidur, T.C. Meng, Z. Said, M. Hasanuzzaman, and A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector, Int. J. Heat Mass Transfer 55 (2012) 5899-5907.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.087

Google Scholar

[7] T.P. Otanicar, Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions, PhD Thesis, Arizona State University, 2009.

Google Scholar

[8] D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, Thermal properties of carbon black aqueous nanofluids for solar absorption, Nanoscale Res. Lett. 6 (2011) 1-7.

DOI: 10.1186/1556-276x-6-457

Google Scholar

[9] L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P.D. Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers, Nanoscale Res. Lett. 6 (2011).

DOI: 10.1186/1556-276x-6-282

Google Scholar

[10] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, and R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Res. Lett. 6 (2011).

DOI: 10.1186/1556-276x-6-225

Google Scholar

[11] Q. Zhu, Y. Cui, L. Mu, and L. Tang, Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation, Int J Thermophys (2012).

DOI: 10.1007/s10765-012-1208-y

Google Scholar

[12] A. Lenert and E.N. Wang, Optimization of nanofluid volumetric receivers for solar thermal energy conversion, Sol. Energy 86 (2012) 253-265.

DOI: 10.1016/j.solener.2011.09.029

Google Scholar

[13] L. Lu, Z.-H. Liu, and H.-S. Xiao, Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment, Sol. Energy 85 (2011) 379-387.

DOI: 10.1016/j.solener.2010.11.008

Google Scholar

[14] T. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, and R.A. Taylor, Nanofluid-based direct absorption solar collector, J Renewable Sustainable Energy 2 (2010).

DOI: 10.1063/1.3429737

Google Scholar

[15] D. Shin and D. Banerjee, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer 54 (2011) 1064-1070.

DOI: 10.1016/j.ijheatmasstransfer.2010.11.017

Google Scholar

[16] K.Y. Leong, R. Saidur, T.M.I. Mahlia, and Y.H. Yau, Predicting size reduction of shell and tube heat recovery exchanger operated with nanofluids based coolants and its associated energy saving, Energy Educ Sci Technol Part A 30 (2012) 1-14.

DOI: 10.1016/j.ijheatmasstransfer.2011.10.027

Google Scholar

[17] R. Saidur and Y.K. Lai, Nanotechnology in vehicle's weight reduction and associated energy savings, Energy Educ Sci Technol Part A 26 (2011) 87-101.

Google Scholar

[18] D.P. Kulkarni, D.K. Das, and R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Appl. Energy 86 (2009) 2566-2573.

DOI: 10.1016/j.apenergy.2009.03.021

Google Scholar

[19] K.Y. Leong, R. Saidur, S.N. Kazi, and A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants, Appl. Therm. Eng. 30 (2010) 2685-2692.

DOI: 10.1016/j.applthermaleng.2010.07.019

Google Scholar

[20] V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, and B. Astinchap, Fabrication and characterization of novel antifouling nanofiltration mambrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite, J Membr Sci 375 (2011) 284-294.

DOI: 10.1016/j.memsci.2011.03.055

Google Scholar

[21] S.K. Das and S.U.S. Choi, A Review of Heat Transfer in Nanofluids, in Advances in Heat Transfer, F.I. Thomas and P.H. James, (Eds.). Elsevier.2009 pp.81-197.

DOI: 10.1016/s0065-2717(08)41002-x

Google Scholar