[1]
S. Mekhilef, A. Safari, W.E.S. Mustaffa, R. Saidur, R. Omar, and M.A.A. Younis, Solar energy in Malaysia: Current state and prospects, Renewable and Sustainable Energy Rev. 16 (2012) 386-396.
DOI: 10.1016/j.rser.2011.08.003
Google Scholar
[2]
T. Yousefi, E. Shojaeizadeh, F. Veysi, and S. Zinadini, An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector, Sol. Energy 86 (2012) 771-779.
DOI: 10.1016/j.solener.2011.12.003
Google Scholar
[3]
T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors, Exp. Therm Fluid Sci. 39 (2012) 207-212.
DOI: 10.1016/j.expthermflusci.2012.01.025
Google Scholar
[4]
T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy 39 (2012) 293-298.
DOI: 10.1016/j.renene.2011.08.056
Google Scholar
[5]
E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, Potential of carbon nanohorn-based suspensions for solar thermal collectors, Sol. Energy Mater. Sol. Cells 95 (2011) 2994-3000.
DOI: 10.1016/j.solmat.2011.06.011
Google Scholar
[6]
R. Saidur, T.C. Meng, Z. Said, M. Hasanuzzaman, and A. Kamyar, Evaluation of the effect of nanofluid-based absorbers on direct solar collector, Int. J. Heat Mass Transfer 55 (2012) 5899-5907.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.087
Google Scholar
[7]
T.P. Otanicar, Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions, PhD Thesis, Arizona State University, 2009.
Google Scholar
[8]
D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, Thermal properties of carbon black aqueous nanofluids for solar absorption, Nanoscale Res. Lett. 6 (2011) 1-7.
DOI: 10.1186/1556-276x-6-457
Google Scholar
[9]
L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P.D. Ninni, S. Barison, C. Pagura, F. Agresti, and D. Jafrancesco, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers, Nanoscale Res. Lett. 6 (2011).
DOI: 10.1186/1556-276x-6-282
Google Scholar
[10]
R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, and R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Res. Lett. 6 (2011).
DOI: 10.1186/1556-276x-6-225
Google Scholar
[11]
Q. Zhu, Y. Cui, L. Mu, and L. Tang, Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation, Int J Thermophys (2012).
DOI: 10.1007/s10765-012-1208-y
Google Scholar
[12]
A. Lenert and E.N. Wang, Optimization of nanofluid volumetric receivers for solar thermal energy conversion, Sol. Energy 86 (2012) 253-265.
DOI: 10.1016/j.solener.2011.09.029
Google Scholar
[13]
L. Lu, Z.-H. Liu, and H.-S. Xiao, Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment, Sol. Energy 85 (2011) 379-387.
DOI: 10.1016/j.solener.2010.11.008
Google Scholar
[14]
T. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, and R.A. Taylor, Nanofluid-based direct absorption solar collector, J Renewable Sustainable Energy 2 (2010).
DOI: 10.1063/1.3429737
Google Scholar
[15]
D. Shin and D. Banerjee, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer 54 (2011) 1064-1070.
DOI: 10.1016/j.ijheatmasstransfer.2010.11.017
Google Scholar
[16]
K.Y. Leong, R. Saidur, T.M.I. Mahlia, and Y.H. Yau, Predicting size reduction of shell and tube heat recovery exchanger operated with nanofluids based coolants and its associated energy saving, Energy Educ Sci Technol Part A 30 (2012) 1-14.
DOI: 10.1016/j.ijheatmasstransfer.2011.10.027
Google Scholar
[17]
R. Saidur and Y.K. Lai, Nanotechnology in vehicle's weight reduction and associated energy savings, Energy Educ Sci Technol Part A 26 (2011) 87-101.
Google Scholar
[18]
D.P. Kulkarni, D.K. Das, and R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Appl. Energy 86 (2009) 2566-2573.
DOI: 10.1016/j.apenergy.2009.03.021
Google Scholar
[19]
K.Y. Leong, R. Saidur, S.N. Kazi, and A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants, Appl. Therm. Eng. 30 (2010) 2685-2692.
DOI: 10.1016/j.applthermaleng.2010.07.019
Google Scholar
[20]
V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, and B. Astinchap, Fabrication and characterization of novel antifouling nanofiltration mambrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite, J Membr Sci 375 (2011) 284-294.
DOI: 10.1016/j.memsci.2011.03.055
Google Scholar
[21]
S.K. Das and S.U.S. Choi, A Review of Heat Transfer in Nanofluids, in Advances in Heat Transfer, F.I. Thomas and P.H. James, (Eds.). Elsevier.2009 pp.81-197.
DOI: 10.1016/s0065-2717(08)41002-x
Google Scholar