[1]
S.U.S Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, 1995, pp.99-105.
Google Scholar
[2]
X. Wang, X. Xu, S.U.S Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transf. 13 (1999) 474-480.
Google Scholar
[3]
S. Lee, S.U.S Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer. 121 (1999) 280-289.
DOI: 10.1115/1.2825978
Google Scholar
[4]
S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer. 125 (2003) 567-574.
DOI: 10.1115/1.1571080
Google Scholar
[5]
D. Prabhanjan, G. Raghavan, T. Rennie, Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger, Int. Commun. Heat Mass Transfer. 29 (2002) 185-191.
DOI: 10.1016/s0735-1933(02)00309-3
Google Scholar
[6]
M. Yasuo, N. Wataru, Study on forced convective heat transfer in curved pipes:(1st report, laminar region), Int. J. Heat Mass Transfer. 8 (1965) 67-82.
DOI: 10.1016/0017-9310(65)90098-0
Google Scholar
[7]
C. Kalb, J. Seader, Heat and mass transfer phenomena for viscous flow in curved circular tubes, Int. J. Heat Mass Transfer. 15 (1972) 801-817.
DOI: 10.1016/0017-9310(72)90122-6
Google Scholar
[8]
N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi, Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers, Appl. Therm. Eng. 51 (2012) 644-652.
DOI: 10.1016/j.applthermaleng.2012.10.008
Google Scholar
[9]
M. Raja, R.M. Arunachalam, S. Suresh, Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert, Int. J. Mech. Mater. Eng. 7 (2012) 16-23.
Google Scholar
[10]
H.A. Mohammed, H.A. Hasan, M.A. Wahid, Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts, Int. Commun. Heat Mass Transfer. 40 (2013) 36-46.
DOI: 10.1016/j.icheatmasstransfer.2012.10.023
Google Scholar
[11]
J.C. Maxwell, A treatise on electricity and magnetism, Clarendon Press, 1881.
Google Scholar
[12]
A. Einstein, Investigation on the Theory of Brownian Motion, Dover, New York, 1956.
Google Scholar
[13]
Gherasim, G. Roy, C.T. Nguyen, D. Vo-Ngoc, Experimental investigation of nanofluids in confined laminar radial flows, Int. J. Therm. Sci. 48 (2009) 1486-1493.
DOI: 10.1016/j.ijthermalsci.2009.01.008
Google Scholar
[14]
Y. Xuan,W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer. 43 (2000) 3701-3707.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[15]
P.M. Kumar, J. Kumar, S. Suresh, Heat Transfer and Friction Factor Studies in Helically Coiled Tube using Al2O3/water Nanofluid, Eur. J. Sci. Res. 82 (2012) 161-172.
DOI: 10.1007/s12206-012-1206-9
Google Scholar
[16]
N. Kannadasan, K. Ramanathan, S. Suresh, Comparison of heat transfer and pressure drop in horizontal and vertical helically coiled heat exchanger with CuO/water based nano fluids, Exp. Therm. Fluid Sci. 42 (2012) 64-70.
DOI: 10.1016/j.expthermflusci.2012.03.031
Google Scholar
[17]
M.R. Sohel, R. Saidur, M.F.M. Sabri, M. Kamalisarvestani, M.M. Elias, A. Ijam, Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel, Int. Commun. Heat Mass Transfer. 42 (2013) 75-81.
DOI: 10.1016/j.icheatmasstransfer.2012.12.014
Google Scholar
[18]
S.M. Hashemi, M.A. Akhavan-Behabadi, An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux, Int. Commun. Heat Mass Transfer. 39 (2012) 144-151.
DOI: 10.1016/j.icheatmasstransfer.2011.09.002
Google Scholar