The Properties of ITO/Arc-ZnO Passivating Layer for TCO Conducting Substrate Deposited by RF Magnetron Sputtering

Article Preview

Abstract:

Abstract. In this work, a thermally stable multilayered transparent conducting oxide (TCO) utilizing ZnO antireflective thin film (arc-ZnO) has been prepared by RF magnetron sputtering. The novel ITO/arc-ZnO conducting substrate with blocking layer capabilities has been designed using step-down interference coating structure based on double layer antireflection coating (DLAR). The XRD result revealed a mixed-oriented type of crystalline structure between ITO and ZnO with preferred [222] and [002] orientations, respectively. The antireflection behaviour of multilayer ITO/arc-ZnO is evidence with the presence of two maximum peaks overshoots at 440 nm and 750 nm range while eliminating approximately 92% reflectance, hence contributes to higher overall transmittance (≥ 87%) in the mid-wavelength region. The ITO/arc-ZnO blocking layers conserves the low resistivity of ITO at 5.71 x 10-4 Ω cm, even after oxidizing during air annealing process above 400 °C. These results demonstrate that the multilayered ITO/arc-ZnO with tailored refractive index substrate is a realistic approach for higher overall transmittance with good stability in electrical properties, prolonged with an added capability of suppressing back electron transfer that is foreseen suitable for dye sensitized solar cell application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-584

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Lee, Y. S. Lee, C. H. Shim, N. J. Choi, B. S. Joo, K. D. Song, J. S. Huh, D.D. Lee , Three electrodes gas sensor based on ITO thin film, Sens. Actuators B: Chem. 93 (2003) 31.

DOI: 10.1016/s0925-4005(03)00335-6

Google Scholar

[2] S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, Low resistivity indium–tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering, J. Vac. Sci. Technol. A 8(1990) 1399.

DOI: 10.1016/0042-207x(91)90990-z

Google Scholar

[3] K. L. Chopra, S. Major, D. K. Pandya, Transparent conductors—A status review, Thin Solid Films 102 (1983) 1.

DOI: 10.1016/0040-6090(83)90256-0

Google Scholar

[4] J. J. Ho, C. Y. Chen, R. Y. Hsiao, O. L. Ho, The work function improvement on indium-tin-oxide epitaxial layers by doping treatment for organic light-emitting device applications, J. Phys. Chem. 111(2007) 8372.

DOI: 10.1021/jp0703408

Google Scholar

[5] Y. Yang, L. Wang, H. Yan, S. Jin, T. J. Marks, S. Li, Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes, Appl. Phys. Lett. 89 (2006) 51116.

DOI: 10.1063/1.2240110

Google Scholar

[6] T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, N. Tanabe, FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem. 164 (2004) 199.

DOI: 10.1016/j.jphotochem.2003.12.028

Google Scholar

[7] J. H. Noh, H. S. Han, S. Lee, D. H. Kim, J. H. Park et. al., Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells, J. Phys. Chem. C 114 (2010) 13867–13871

Google Scholar

[8] S.Lee, J.H. Noh, H.S. Han, D.K. Yim, D. H. Kim, J.K. Lee, J. Y. Kim, H.S. Jung, K.S. Hong, Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells. J.Phys.Chem.C113 (2009) 6878–6882.

DOI: 10.1021/jp9002017

Google Scholar

[9] J. H. Noh, S. Lee, J. Y. Kim, J.-K. Lee, H. S. Han, C. M. Cho, I. S. Cho, H. S. Jung, and K. S. Hong, Functional multilayered transparent conducting oxide thin films for photovoltaic devices, The Journal of Physical Chemistry C, vol. 113, pp.1083-1087, 2008.

DOI: 10.1021/jp808279j

Google Scholar

[10] R.B. Pettit, C.J. Brinker, C.S. Ashley, Sol-gel double-layer antireflection coatings for silicon solar cells, Solar Cells 15 (1985) 267–278.

DOI: 10.1016/0379-6787(85)90083-3

Google Scholar

[11] M.J. Chuang, H.F. Huang, C.H. Wen, A.K. Chu, On the structure and surface chemical composition of indium-tin oxide films prepared by long-throw magnetron sputtering, Thin Solid Films 518 (2010) 2290–2294.

DOI: 10.1016/j.tsf.2008.10.146

Google Scholar

[12] R.V. Joshi, S. Brodsky, Collimated sputtering of TiN/Ti liners into sub‐half‐micrometer high aspect ratio contacts/lines, Applied Physics Letters 61 (1992) 2613–2615.

DOI: 10.1063/1.108116

Google Scholar

[13] M. Kamei, H. Enomoto, I. Yasui, Origin of the crystalline orientation dependence of the electrical properties in tin-doped indium oxide films, Thin Solid Films 392 (2001) 265.

DOI: 10.1016/s0040-6090(01)01041-0

Google Scholar

[14] G. Frank, H. Kostlin, Electrical properties and defect model of tin-doped indium oxide layers Appl. Phys. A 27 (1982) 197.

DOI: 10.1007/bf00619080

Google Scholar

[15] J. van de Lagemaat, N.-G. Park, A.J. Frank, Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Electrical Impedance and Optical Modulation Techniques, J. Phys. Chem. B 104 (2000) 2044.

DOI: 10.1021/jp993172v

Google Scholar

[16] C. Longo, A.F. Nogueira, M.-A. De Paoli, H. Cachet, Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy, J. Phys. Chem. B 106 (2002) 5925.

DOI: 10.1021/jp014456u

Google Scholar

[17] B.S. Richards, S.F. Rowlands, C.B. Honsberg and J.E. Cotter, TiO2 DLAR coatings for planar silicon solar cells, Res. Appl. 11 (2003) 27-32.

DOI: 10.1002/pip.474

Google Scholar

[18] M.A. Green, Silicon Solar Cells: Adv. Principles and Practice, Bridge Printery, Sydney, Australia, 1995.

Google Scholar

[19] D. Mergel, Z. Qiao, Correlation of lattice distortion with optical and electrical properties of InO: Sn films, J. Appl. Phys. 95 (2004) 5608.

DOI: 10.1063/1.1704852

Google Scholar

[20] Gonza`lez, G. B. Mason, T. O. Quintana, J. P. Warschkow, O. Ellis, D. E. Hwang, J.-H. Hodges, J. P. Jorgensen, J. D. Defect structure studies of bulk and nano-indium-tin oxide, J. Appl. Phys. 96 (2004) 3912.

DOI: 10.1063/1.1783610

Google Scholar