The Effect of Ball Milling on the Electrochemical Behavior of Silicon Composite Electrode

Article Preview

Abstract:

Silicon material possesses the highest theoretic capacity (4200mAh/g, ten times of the capacity of commercialized carbon anode materials) of all known anode materials for lithium ion batteries and thus receives lots of attention to date. Silicon-containing composite electrode for lithium ion batteries was prepared by high-energy ball milling process. The microstructure and morphology of silicon electrode was investigated in detail. The effect of the structure transformation of the electrode by ball milling on the electrochemical behavior was systematically analyzed. Electrode precursors after a mediate ball milling time of 45min is beneficial to get a better cycling performance, due to the well distributed and less destroy of Carboxyl Methyl Cellulose (CMC). Weak lithium insertion into CMC occurs unavoidably in the charging-discharging process of the composite electrodes, which should be the main reason for the sudden disability of electrode. The electrochemical properties can get a dramatic enhancement within voltage window of 0.02-1.5V. Excellent cyclability with high capacity retention above 1800mAh/g after 40 cycles could be gained by controlling the ball-milling time and the voltage windows. It might be a feasible way to obtain satisfactory cyclability for high capacity anode materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-285

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Yang, M. Wachtler, M. Winter, et al., Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries, Electrochem. Solid-state Lett. 2 (1999) 161-163.

DOI: 10.1149/1.1390769

Google Scholar

[2] J. P. Maranch, A. F. Hepp, P. N. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries, J. Electrochem. Soc. 6 (2003) A198-A201.

DOI: 10.1149/1.1596918

Google Scholar

[3] J. -H. Ahn, G.X. Wang, J. Yao, H.K. Liu, S.X. Dou, Tin-based composite materials as anode materials for Li-ion, J. Power Sources. 119-121 (2003) 45-49.

DOI: 10.1016/s0378-7753(03)00122-8

Google Scholar

[4] A. Netz, R. A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems, J. Power Sources. 119-121 (2003) 95-100.

DOI: 10.1016/s0378-7753(03)00132-0

Google Scholar

[5] H. Kim, B. Han, J. Choo, J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angew. Chem. Int. Ed. 47 (2008) 10151-10154.

DOI: 10.1002/anie.200804355

Google Scholar

[6] J. K. Lee, W. Y. Yoon, B. K. Kim, Electrochemical behavior of Si nanoparticle anode coated with diamond-like carbon for lithium-ion battery, J. Electrochem. Soc. 159 (2012) A1844-A1848.

DOI: 10.1149/2.045211jes

Google Scholar

[7] C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources. 189 (2009) 34-39.

DOI: 10.1016/j.jpowsour.2008.12.047

Google Scholar

[8] M. G. Kim and J. Cho, Reversible and high-capacity nanostructured electrode materials for li-ion batteries, Adv. Funct. Mater. 19 (2009) 1497-1514.

DOI: 10.1002/adfm.200801095

Google Scholar

[9] W. R. Liu, M. H. Yang, H. C. Wu, et al., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder, Electrochem. Solid-State Lett. 8 (2) (2005) A100-A103.

DOI: 10.1149/1.1847685

Google Scholar

[10] J. Li, H. M. Dahn, L. J. Krause, D. B. Le and J. R. Dahn, Impact of binder choice on the performance of α-Fe2O3 as a negative electrode, J. Electrochem. Soc. 155 (11) (2008) A812-A816.

DOI: 10.1149/1.2969433

Google Scholar

[11] J. Li, R. B. Lewis and J. R. Dahn, Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries, Electrochem. Solid-State Lett. 10(2) (2007) A17-A20.

DOI: 10.1149/1.2398725

Google Scholar

[12] R. R. Garsuch, D. B. Le, A. Garsuch, et al., Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries, J. Electrochem. Soc. 155 (10) (2008) A721-A724.

DOI: 10.1149/1.2956964

Google Scholar

[13] J. -S. Bridel, T. Azais, M. Morcrette, J. -M. Tarascon and D. Larcher, Key parameters governing the reversibility of Si/carbon/CMC for lithium ion batteries, Chem. Mater. 22 (2010) 1229-1224.

DOI: 10.1021/cm902688w

Google Scholar

[14] S. D. Beattie, D. Larcher, M. Morcrette, B. Simon and J. -M. Tarascon, Si electrodes for Li-ion batteries-a new way to look at an old problem, J. Electrochem. Soc. 155 (2) (2008) A158-A163.

DOI: 10.1149/1.2817828

Google Scholar

[15] M. N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochem. Solid-State Lett. 7(5) (2004) A93-A96.

DOI: 10.1149/1.1652421

Google Scholar

[16] S. Ohara, J. Suzuki, K. Sekine, T. Takamur, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources. 119–121 (2003) 591-596.

DOI: 10.1016/s0378-7753(03)00301-x

Google Scholar