Preparation and Magnetic Property of Carbon Nanotube/NiZnCo Ferrite Composite

Article Preview

Abstract:

Precipitation hydrothermal method was used to synthesis carbon nanotubes (CNTs) /Ni0.5Zn0.45Co0.05Fe2O4 composites, and then 1wt%CNTs/Ni0.5Zn0.45Co0.05Fe2O4 ceramics were fabricated by spark plasma sintering (SPS) technique. The phase, microstructure and magnetic properties of 1wt%CNTs/Ni0.5Zn0.45Co0.05Fe2O4 were investigated. The results show that, the substitution of zinc ions by cobalt didn’t change the spinel phase of Ni-Zn ferrite. In the SPS process, CNTs promoted the sintering kinetics, and the liquid state of Ni can act as sintering aid to accelerate the grain boundary extension. After sintered by SPS at 750 °C for 5min, the density of the bulk is about 5.2g/cm3, the grain size increased to 91nm, and the saturation magnetization of the 1wt%CNTs/Ni0.5Zn0.45Co0.05Fe2O4 composite ceramics reached at 79.7emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

286-290

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Albuquerque AS, Ardisson JD, Macedo WAA, Alves M. Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism, Journal of Applied Physics. 87(2000)4352-4357.

DOI: 10.1063/1.373077

Google Scholar

[2] Verma A, Dube D.C., Processing of Nickel–Zinc Ferrites Via the Citrate Precursor Route for High-Frequency Applications, Journal of the American Ceramic Society. 88(2005)519-523.

DOI: 10.1111/j.1551-2916.2005.00098.x

Google Scholar

[3] Reddy MP, Madhuri W, Reddy NR, Kumar KS, Murthy V, Reddy RR, Magnetic properties of Ni-Zn ferrites prepared by microwave sintering method, Journal of electroceramics. 28(2012)1-9.

DOI: 10.1007/s10832-011-9670-7

Google Scholar

[4] S. B. CHO, D. H. KANG, J. H. OH, Relationship between magnetic properties and microwave- absorbing characteristics of NiZnCo ferrite composites, Journal of materials science. 31 (1996) 4719-4722.

DOI: 10.1007/bf00366375

Google Scholar

[5] Shemelin V, Liepe M, Padamsee H, Characterization of ferrites at low temperature and high frequency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 557(2006)268-271.

DOI: 10.1016/j.nima.2005.10.081

Google Scholar

[6] Thomassin JM, Huynen I, Jerome R, Detrembleur C. Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix: application to electromagnetic interference (EMI) absorber materials. Polymer, 51(2010).

DOI: 10.1016/j.polymer.2009.11.012

Google Scholar

[7] Q. Huang, L. Gao, Multiwalled carbon nanotube/BaTiO3 nanocomposites: Electrical and rectification properties, Applied Physics Letters, 86(2005)123104.

DOI: 10.1063/1.1884763

Google Scholar

[8] Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(2001)1899-(1912).

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[9] Han M, Deng L. Doping effect of multiwall carbon nanotubes on the microwave electromagnetic properties of NiCoZn spinel ferrites. Applied Physics Letters, 90(2007)011108.

DOI: 10.1063/1.2429020

Google Scholar

[10] R. C. Che, C. Y. Zhi, C. Y. Liang, X. G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Applied Physics Letters, 88(2006)033105.

DOI: 10.1063/1.2165276

Google Scholar

[11] Y.Q. Liu, L Gao, A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes, Carbon, 43(2005)47-52.

DOI: 10.1016/j.carbon.2004.08.019

Google Scholar

[12] H. Q. Cao, M. F. Zhu, Y. G. Li, J. H. Liu, Z. Ni, Z. Y. Qin. A highly coercive carbon nanotube coated with Ni0. 5Zn0. 5Fe2O4 nanocrystals synthesized by chemical precipitation- hydrothermal process. Journal of solid state chemistry, 180(2007).

DOI: 10.1016/j.jssc.2007.08.018

Google Scholar

[13] X. B. Zhou, L. Shen, L. Li, S. H. Zhou, T. M. Huang, C. F. Hu, et al. Microwave sintering carbon nanotube/Ni0. 5Zn0. 5Fe2O4 composites and their electromagnetic performance, Journal of the European Ceramic Society. 33(2013)2119-2126.

DOI: 10.1016/j.jeurceramsoc.2013.03.017

Google Scholar

[14] X. B. Zhou, L. Shen, L. Li, T. M. Huang, C. F. Hu,W. M. Pan, et al. Preparation of nanocrystalline-coated carbon nanotube/Ni0. 5Zn0. 5Fe2O4 composite with excellent electromagnetic property as microwave absorber. Journal of Physics D: Applied Physics, 46(2013).

DOI: 10.1088/0022-3727/46/14/145002

Google Scholar

[15] Q. Huang, D. T. Jiang, Ovid'Ko I, Mukherjee A. High-current-induced damage on carbon nanotubes: The case during spark plasma sintering. Scripta Materialia, 63(2010)1181-1184.

DOI: 10.1016/j.scriptamat.2010.08.030

Google Scholar

[16] Leslie-Pelecky DL, Rieke RD. Magnetic properties of nanostructured materials. Chemistry of Materials, 8(1996)1770-1783.

DOI: 10.1021/cm960077f

Google Scholar

[17] Manova E, Kunev B, Paneva D, Mitov I, Petrov L, Estournès C, et al. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chemistry of Materials, 16(2004)5689-5696.

DOI: 10.1021/cm049189u

Google Scholar