Influence of the Particle Size of LDPE on the Performance of Cu/LDPE Composites

Article Preview

Abstract:

The Cu/LDPE composites were characterized through the tests of micro-structure, mechanical property, surface hydrophilicity and releasing rate of cupric ions, in order to study the influence of the particle size of LDPE on the performance of Cu/LDPE composites. The results indicate that, with decreasing of the particle size of LDPE, Cu/LDPE composites have greater value of elongation at break and releasing rate of cupric, but smaller value of tensile strength and elasticity modulus, and the influence on surface hydrophilicity and crystalline is little. It is considered that the influence of the particle size of LDPE on the performance of Cu/LDPE composites results from the difference of both the molecular weight of LDPE and the dispersion uniformity of copper in LDPE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-334

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Balgobin, B. Garcia, D. Karamanev, et al, Preparation and proton conductivity of composite SiO2/Poly (2-hydroxyethyl methacrylate) gel membranes, Solid State Ionics. 181 (2010) 1403-1407.

DOI: 10.1016/j.ssi.2010.07.025

Google Scholar

[2] S.K. Dhoke, A.S. Khanna. Study on electrochemical behavior of nano-ZnO modified alkyd-based waterborne coatings, Journal of Applied Polymer Science. 113 (2009) 2232-2237.

DOI: 10.1002/app.30276

Google Scholar

[3] E. Dzunuzovic, M. Marinovic-Cincovic, J. Vukovic, et al, Thermal properties of PMMA/TiO2 nanocomposites prepared by in-situ bulk polymerization, Polymer Composites. 30 (2009) 737-742.

DOI: 10.1002/pc.20606

Google Scholar

[4] G.H. Kim, J.S. Lee, C.M. Koo, et al, Preparation and characterization of thermoplastic composite based on poly(vinylidene fluoride) and multiwalled carbon nanotube, Composite Interfaces. 16 (2009) 507-518.

DOI: 10.1163/156855409x450918

Google Scholar

[5] V. Martelli, N. Toccafondi, G. Ventura, Low-temperature thermal conductivity of Nylon-6/Cu nanoparticles, Physica B-Condensed Matter, 405(20) (2010): 4247-4249.

DOI: 10.1016/j.physb.2010.06.031

Google Scholar

[6] F. Raga, F. Bonilla-Musoles, E.M. Casañ, el al, Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity, Human Reproduction. 14(11) (1999) 2851-2854.

DOI: 10.1093/humrep/14.11.2851

Google Scholar

[7] M. Fukuda, K. Fukuda, Uterine endometrial cavity movement and cervical mucus, Human Reproductio. 9(6) (1994) 1013-1016.

DOI: 10.1093/oxfordjournals.humrep.a138625

Google Scholar

[8] S.Z. Cai, X.P. Xia, C.S. Xie, Corrosion behavior of copper/LDPE nanocomposites in simulated uterine solution, Biomaterials. 26 (2005) 2671-6.

DOI: 10.1016/j.biomaterials.2004.08.003

Google Scholar

[9] T. Xu, H. Lei, S.Z. Cai, et al, The release of cupric ion in simulated uterine: new material nano-Cu/low-density polyethylene used for intrauterine devices, Contraception. 70 (2004) 153-157.

DOI: 10.1016/j.contraception.2004.02.018

Google Scholar

[10] G. Tsanadis, S.N. Kalantaridou, A. Kaponis, et al. Bacteriological cultures of removed intrauterine devices and pelvic inflammatory disease, Contraception. 65(5) (2002) 339-342.

DOI: 10.1016/s0010-7824(02)00284-6

Google Scholar