Structural and Electrical Transport Properties of the Type-I Clathrate Phase Ba8Ga16InxGe30-x

Article Preview

Abstract:

Thermoelectric (TE) devices are increasingly being seen as having the potential to make important contributions to reducing greenhouse gas emissions and providing cleaner forms of energy. A number of articles have been devoted to the thermoelectric properties of materials. From the search for novel and effective thermoelectric materials the clathrate structures has emerged as one of the most promising candidates for achieving very high thermoelectric figure of merit: ZT= α2σT/κ, where α, T, σ and κ are the Seebeck coefficient, absolute temperature, electrical conductivity, and total thermal conductivity, respectively [1]. For the past decade, caged clathrate compounds of group IV elements have attracted much attention because they would possess a low kL value as the theoretical minimum one, which results from rattling of atoms filled in their cages [2-3]. There are the type-I, type-III, and type-VIII structures in thermoelectric clathrates, but most compounds adopt type-I structure (space group No.223; Pm-3n). A large number of the type-I clathrates with the chemical formula of II8III16IV30 (II=Ba, Sr, Eu, III=Al, Ga, In, and IV= Si, Ge, Sn) have been synthesized and studied intensively [5-11], which results in relatively high ZT values such as 0.7 at 700 K for Ba8Ga16Ge30 and 0.87 at 870 K for Ba8Ga16Si30 [3]. Among type-I clathrates, a single-crystal n-type Ba8Ga16Ge30 grown using the Czochralski method with a ZT of 1.35 at 900 K is one of the most promising results [12].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-348

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Limited, London, (1957).

Google Scholar

[2] G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Appl. Phys. Lett. 73 (1998) 178.

Google Scholar

[3] V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe, J. Appl. Phys. 87 (2000) 7871.

Google Scholar

[4] M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Nature Mater. 7 (2008) 811.

DOI: 10.1038/nmat2273

Google Scholar

[5] M.A. Avila, K. Suekuni, K. Umeo, T. Takabatake, Physica B 383 (2006) 124.

Google Scholar

[6] Y. Li, J. Gao, N. Chen, Y. Liu, Z.P. Luo, R.H. Zhang, X.Q. Ma, G.H. Cao, Physica B 403 (2008) 1140.

Google Scholar

[7] G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Appl. Phys. Lett. 178 (1998) 73.

Google Scholar

[8] M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, T. Takabatake, Appl. Phys. Lett. 92 (2008) 041901.

DOI: 10.1063/1.2831926

Google Scholar

[9] J. Martin, G.S. Nolasa, H. Wang, J. Appl. Phys. 102 (2007) 103719.

Google Scholar

[10] D.C. Li, L. Fang , S.K. Deng, K. Y. Kang, L.X. Shen, W.H. Wei, H.B. Ruan, Physical B 407 (2012) 1238.

Google Scholar

[11] D.C. Li, L. Fang , S.K. Deng, K. Y. Kang, L.X. Shen, W.H. Wei, H.B. Ruan Phys. Status Solidi B, 7 (2012) 1423.

Google Scholar

[12] A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D. M. Rowe, J.D. Bryan, G.D. Stucky, J. Appl. Phys. 023708 (2006) 99.

DOI: 10.1063/1.2163979

Google Scholar

[13] S.K. Deng, Y. Saiga, K. Kajisa, T. Takabatake, J. Appl. Phys. 109 (2011) 103704.

Google Scholar

[14] S.K. Deng, X.F. Tang, Q. J. Zhang, J. Appl. Phys. 102 (2007) 043702.

Google Scholar

[15] S. Johnsen, A. Bentien, G.K.H. Madsen, M. Nygren, B.B. Iversen, Phys. Rev. B 76 (2007) 245126.

Google Scholar

[16] S. Latturner, X. Bu, N. Blake, H. Metiu, and G. Stucky, J. Solid State Chem. 151 (2000) 61.

Google Scholar

[17] N.P. Blake, D. Bryan, S. Latturner, L. Møllnitz, G.D. Stucky, H. Metiu, J. Chem. Phys. 114 (2001) 10063.

DOI: 10.1063/1.1370949

Google Scholar

[18] J. S. Tse, T. Iitaka, T. Kume, et al. Phys Rev B, 72 (2005) 155441.

Google Scholar

[19] S. L. Fang, L. Grigorian, P. C. Eklund, et al. Phys Rev B, 57 (1998) 7686.

Google Scholar

[20] H. Ohta, S. Kim, Y. Mune, et al., Nat Mater, 6 (2007) 129.

Google Scholar

[21] Y. Takasu, T. Hasegawa, N. Ogita, and M. Udagawa, M. A. Avila, K. Suekuni, I. Ishii, T. Suzuki, and T. Takabatake, Phys Rev B, 74 (2006) 174303.

Google Scholar

[22] H. Shimizu, Y. Takeuchi, T. Kume, et al., J Alloy Compd. 487 (2009) 47.

Google Scholar

[23] G. Snyder and E. Toberer, Nat. Mater. 7 (2008) 105.

Google Scholar

[24] N. W. Ashcroft and N. D. Mermin, Solid State Physics. (Holt, Rinehart Winston, New York, 1976), p.487.

Google Scholar

[25] V. D. Das and S. Selvaraj, Mater Chem Phys, 62 (2000) 68.

Google Scholar

[26] V. D. Das and R. C. Mallik, Mater Res Bull, 37 (2002) (1961).

Google Scholar

[27] O. Yamashita, S. Tomiyoshi and K. Makita, J Appl Phys, 93 (2003) 368.

Google Scholar

[28] S. K. Deng, X. F. Tang, P. Li and Q. J. Zhang, J Appl Phys, 103 (2008) 073503.

Google Scholar