Synthesis and Physical Properties of Graphene Nanosheets Reinforced Copper Composites

Article Preview

Abstract:

Cu/graphene nanosheets composites were fabricated at 800°C by the hot-pressing method using Cu and graphene as initial materials. Graphene content was 1 wt. %-5 wt. %. The fracture morphology and physical properties of the composites were investigated. It was found that the relative density increased with the increment of graphene content from 1 wt% to 5 wt. % with reaching its highest level (96.68%) at 5wt. %. The composites have the anisotropic property which is vertical to the direction of pressure is higher than parallel to the direction of pressure. With the increasing of graphene content, the thermal conductivity property and the electronic conductivity decrease first and then increase with the minimum thermal conductivity and electric conductivity at 3wt%~4wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-314

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Novoselov, A. Geim, S. Morozov, Electric field effect in atomically thin carbon films, J. Sci, 306 (2004)666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] W.A. Heer, C. Berger, X.S. Wu, E.H. Conrad, X.B. Li, M. Sprinkle, Epitaxial Graphene, J. Solid State Communications, 143 (2007)92-100.

DOI: 10.1016/j.ssc.2007.04.023

Google Scholar

[3] Y.B. Zhang, Y.W. Tan, Stormer HL, Kim P, Experimental observation of the quantum Hall effect and Berry's phase in graphene,J. Nature, 438 (2005)201.

DOI: 10.1038/nature04235

Google Scholar

[4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva. Two-dimensional gas of massless Dirac fermions in graphene, J. Nature, 438 (2005)197.

DOI: 10.1038/nature04233

Google Scholar

[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, Two-dimensional gas of massless Dirac fermions in graphene,J. Nature, 438 (2005)197.

DOI: 10.1038/nature04233

Google Scholar

[6] S. Gilje, S. Hong, M.S. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications, J. Nano Letters, 11 (2007)3394-3398.

DOI: 10.1021/nl0717715

Google Scholar

[7] Y.F. Xu, Z.B. Liu, X.L. Zhang, Y. Wang, A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property, J. Advanced Materials, 12 (2009)1275-1279.

DOI: 10.1002/adma.200801617

Google Scholar

[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, Electric field effect in atomically thin carbon films, J. Science, 306 (2004)666.

DOI: 10.1126/science.1102896

Google Scholar

[9] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, J. Science, 321 (2008)385.

DOI: 10.1126/science.1157996

Google Scholar

[10] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao. Superior thermal conductivity of single-layer graphene, J. Nano Letter, 8 (2008)902.

DOI: 10.1021/nl0731872

Google Scholar

[11] A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, A. Mohajeri, Mechanical properties of multi-walled carbon nanotube/epoxy composites, J. Mater Des, 31 (2010)4202-4208.

DOI: 10.1016/j.matdes.2010.04.018

Google Scholar

[12] T.X. Liu, L. Shen, S.Y. Chow, W.D. Zhang, Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites, J. Macromolecules, 37 (2004)7214-7222.

DOI: 10.1021/ma049132t

Google Scholar

[13] R. George, K. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, J. Scripta Mater, 53(2005)1159-1163.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[14] I.S. Batra, A. Laik, Microstructure and properties of a Cu-Ti-Co alloy, J. Materials Science and Engineering, 402 (2005)118-125.

DOI: 10.1016/j.msea.2005.04.015

Google Scholar

[15] W.A. Monteiro, Carrio JAG, Silveira CRD, Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy Method, J. Materials Science Forum, 660 (2010)41-45.

DOI: 10.4028/www.scientific.net/msf.660-661.41

Google Scholar

[16] W.A. Monteiro, Carrio JAG, Silveira CRD, Properties of copper composites strengthened by nano-sized and micro-sized Al2O3particles, J. International Journal of Materials Research, 3 (2010)334-339.

Google Scholar

[17] E. Hong, B. Kaplin, T. You, Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles, J. Wear, 270 (2001)591-597.

DOI: 10.1016/j.wear.2011.01.015

Google Scholar

[18] F. Shehata, A. Fathy, M. Abdelhameed, S.F. Moustafa, Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing, J. Materials And Design, 30 (2009)2756-2762.

DOI: 10.1016/j.matdes.2008.10.005

Google Scholar

[19] S. Stankovich, D.A. Dikin, G.B. Dommett, K.M. Kohlhaas, E.J. Zimney, Graphene-based composite materials, J. Nature, 442 (2006)282-286.

DOI: 10.1038/nature04969

Google Scholar

[20] K.D. Georgio, T. Emmanuel, E.F. George, Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage, J. Nano Letters, 8(2008)3166-3170.

DOI: 10.1021/nl801417w

Google Scholar

[21] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gunko. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, J. Carbon, 44 (2006)1624-1652.

DOI: 10.1016/j.carbon.2006.02.038

Google Scholar

[22] R.S. Shishir, F. Chen, J. Xia, N.J. Tao, D.K. Ferry, Room temperature carrier transport in graphene, J. Journal of Computational Electronics, 8 (2009)43-50.

DOI: 10.1007/s10825-009-0278-y

Google Scholar

[23] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, Superior Thermal Conductivity of Single-Layer Graphene, J. Nano Letters, 8(2008)63-68.

DOI: 10.1021/nl0731872

Google Scholar

[24] K. Gyemin, S. Kwanwoo, J.S. Bong, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, J. Progress in Polymer Science, 35 (2010)357-401.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar