Properties of SiO2CuOx Films for Nitrogen Dioxide Detection

Article Preview

Abstract:

SiOxCuOy thin films were prepared by the deposition on to the Si/SiO2 substrates from the alcoholic solutions employing the sol-gel technique. The various analytic techniques were applied to characterize structure and properties of the films under study . The both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies showed the presence CuO as well as CuO2 phases and formation of a dual-oxide CuSiO3 with the average crystallites sizes of 35-50 nm. The conductance of the films was rather sensitive to the presence of 1-20 ppm NO2 concentration at the operating temperatures in the range of 20–200 C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

112-116

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.K. Varghese, C.A. Grimes, J. Nanosci. Nanotechnol. Vol. 3 (2003), p.277–293.

Google Scholar

[2] H. Lin, C. Hsu, H. Yang, P. Lee, C. Yang. Sens. Actuat. B: Chem. Vol. 22 (1994), p.63–68.

Google Scholar

[3] H.W. Suh, G.Y. Kim, Y.S. Jung, W.K. Choi, D. Byun, Appl. Phys. Lett. Vol. 97 (2005), p.044305.

Google Scholar

[4] B.T. Marquis, J.F. Vetelino. Sens. Actuat. B: Chem. Vol. 65 (2001), p.100–110.

Google Scholar

[5] D. Barreca, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello. Sens. and Actuat. B. Vol. 141 (2009), p.270 – 275.

DOI: 10.1016/j.snb.2009.05.038

Google Scholar

[6] N. K. Plugotarenko, V. V. Petrov, V. A. Ivanetz, V. A. Smirnov. Glass Physics and Chem. Vol. 37 (2011), p.590–595.

Google Scholar

[7] J. Yang, P.K. Dutta. Sens. Actuat. B: Chem. Vol. 125 (2007), p.30–39.

Google Scholar

[8] J. Arbiol, A. Cirera, F. Peiró, A. Cornet, J.R. Morante, J.J. Delgado, J.J. Calvino. Appl. Phys. Lett. Vol. 80 (2002), pp.329-331.

DOI: 10.1063/1.1433903

Google Scholar

[9] Y. Abdu, A.O. Musa, Bajopas. Journal of Pure and Applied Sciences Vol. 2 (2009), p.8 – 12.

Google Scholar

[10] K. Han, M. Tao. Solar Energy Materials and Solar Cells. Vol. 93 (2009), pp.153-157.

Google Scholar

[11] S. Ishizuka, T. Yoshiyama, K. Mizukoshi, A. Yamada and S. Niki, Sol. Energy Mater. Sol. Cells Vol. 94 (2010), p.2052-(2056).

Google Scholar

[12] A. Aslani and V. Oroojpour, Physica B Vol. 406 (2011), pp.144-149.

Google Scholar

[13] S. Anandan, X. Wen and S. Yang. Mater. Chem. Phys. Vol. 93 (2005), pp.35-40.

Google Scholar

[14] Shang-Wei Tsai, Jin-Chern Chiou. Sensors and Actuat. B: Chem. Vol. 152 (2011), p.176–182.

Google Scholar

[15] L. Zbroniec, A. Martucci, T. Sasaki, N. Koshizaki. Applied Physics A Vol. 79 (2004), pp.1303-1305.

Google Scholar

[16] G.E. Yalovega, V.A. Shmatko T.N. Nazarova, V. V Petrov, O.V. Zabluda. Izvestiya Visshih Uchebnih Zavedeniy Materiali Electronnoy Tehniki Vol. 4 (2010), pp.31-35.

Google Scholar

[17] V.V. Petrov, T.N. Nazarova, A.N. Korolev, N.F. Kopylova Sens. Actuat. B. Vol. 133 (2008), pp.291-295.

Google Scholar

[18] L.A. Patil, D.R. Patil. Sens. and Actuat. B Vol. 120 (2006), p.316–323.

Google Scholar

[19] Z.H. Liang, Y.J. Zhu. Chem. Lett. Vol. 34 (2005), pp.214-215.

Google Scholar

[20] W.W. Wang, Y.J. Zhua, G.F. Cheng, Y.H. Huang, Mater. Lett. Vol. 60 (2006), p.609 – 612.

Google Scholar