Manufacture of Nb3Al Short Wires by RHQT Method Using a Newly Designed Apparatus

Article Preview

Abstract:

A new apparatus is designed and fabricated for rapid heating and quenching (RHQ) process of Nb/Al precursor short wires. As the primary step, Nb/Al precursor with large Nb/Al filaments is manufactured through rod-in-tube (RIT) method to study the RHQ parameters. This apparatus could heat Nb/Al precursor short wire up to about 2000 °C in 10 ms-100 ms and then quench the wire into molten gallium. Results of line scan from SEM-EDS show that Nb3Al is formed in short wires. Tests show that the zero-resistance temperature of Nb3Al short wire is about 17.7 K, which also indicates that stoichiometric Nb3Al is formed. However, the critical current (IC) is only 1.8 A at 10.2 K. The low IC can be explained by the low volume ratio of superconducting Nb3Al and lots of voids along the wire. Further optimization and improvements will be performed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

1638-1641

Citation:

Online since:

October 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Takeuchi, A. Kikuchi, N. Banno, H. Kitaguchi, Y. Iijima, K. Tagawa, K. Nakagawa, K. Tsuchiya, C. Mitsuda, N. Koizumi, K. Okuno: Cryogenics, Vol. 48(2008), pp.371-380.

DOI: 10.1016/j.cryogenics.2008.04.007

Google Scholar

[2] Y. Yamada, N. Ayai, A. Mikumo, M. Ito, K. Hayashi, K. Takahashi, K. Sato, N. Koizumi, T. Anda, K. Matshui, M. Sugimoto, H. Tsuji, K. Okuna: Cryogenics, Vol. 39 (1999), pp.115-122.

DOI: 10.1016/s0011-2275(99)00022-3

Google Scholar

[3] S. Ceresara, M. Ciotti, F. Felli, G. Giunchi, A. Mauro, T. Petrisor and M. Spadoni: Physica C, Vol. 386 (2003), pp.394-397.

DOI: 10.1016/s0921-4534(02)02212-8

Google Scholar

[4] F. Chen: SHANGHAI NONFERROUS METALS, Vol. 31 (2010), pp.136-140.

Google Scholar

[5] T. Takeuchi: Supercond. Sci. Technol., Vol. 13 (2000), R101-R119.

Google Scholar

[6] M. Kosuge, T.K. Taeuchi, K. Tagawa, N. Banno, M. Yuyama, H. Wada, K. Nakagawa, T. Yamanaka and H. Moriai: IEEE Trans. Appl. Superconduct., Vol. 10, No. 1 (2000) pp.1034-1037.

DOI: 10.1109/77.828408

Google Scholar

[7] K. Tagawa, T. Takeuchi, N. Banno, Y. Iijima, A. Kikuchi, H. Kitaguchi, G. Iwaki and Y. Sakurai: IEEE Trans. Appl. Superconduct., Vol. 16 (2006), pp.1168-1171.

DOI: 10.1109/tasc.2005.864291

Google Scholar

[8] K. Tachikawa: Physica C, Vol. 484 (2013), pp.125-129.

Google Scholar

[9] H. Wu, Y. Bi, W. Wu, Y. Song, S. Deng, J. Li, X. Liu, Y. Feng, P. Zhang, L. Zhou: Superconductivity, Vol. 39 (2011), pp.24-27.

Google Scholar

[10] T. Takeuchi, Y. Iijima, K. Inoue and H. Wada: IEEE Trans. Appl. Superconduct., Vol. 7, No. 2 (1997), pp.1529-1532.

Google Scholar