[1]
M. D. Al-Ansary, Flexural vibrations of rotating beams considering rotary inertia. Computers and Structures 69 (1998) 321-328.
DOI: 10.1016/s0045-7949(98)00134-5
Google Scholar
[2]
A. I. Bokhonsky and S. Żółkiewski, Modelling and Analysis of Elastic Systems in Motion. Monograph, Silesian University of Technology Press, Gliwice (2011).
Google Scholar
[3]
A. Buchacz and M. Płaczek, Selection of Parameters of External Electric Circuit for Control of Dynamic Flexibility of a Mechatronic System, Solid State Phenomena 164 (2010) 323-326.
DOI: 10.4028/www.scientific.net/ssp.164.323
Google Scholar
[4]
A. Buchacz and M. Płaczek, Development of Mathematical Model of a Mechatronic System, Solid State Phenomena 164 (2010) 319-322.
DOI: 10.4028/www.scientific.net/ssp.164.319
Google Scholar
[5]
A. Buchacz and M. Płaczek, The approximate Galerkin's method in the vibrating mechatronic system's investigation, Proceedings of The 14th International Conference Modern Technologies, Quality and Innovation ModTech 2010, 20-22 May, 2010, Slanic Moldova, Romania (2010).
Google Scholar
[6]
T. -P. Chang and H. -C. Chang, Vibration and buckling analysis of rectangular plates with nonlinear elastic end restraints against rotation. International Journal of Solids and Structures 34, 18 (1997) 2291-2301.
DOI: 10.1016/s0020-7683(96)00146-1
Google Scholar
[7]
Y. K. Cheung and D. Zhou, The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh–Ritz method. Journal of Sound and Vibration 223, 5 (1999) 703-722.
DOI: 10.1006/jsvi.1998.2160
Google Scholar
[8]
B. Dyniewicz and C. I. Bajer, New feature of the solution of a Timoshenko beam carrying the moving mass particle. Archives of Mechanics 62, 5 (2010) 327-341.
Google Scholar
[9]
G. Genta, Dynamics of Rotating Systems. Springer, New York, (2005).
Google Scholar
[10]
J. B. Gunda, R. K. Gupta and R. Gangul, Hybrid stiff-string–polynomial basis functions for vibration analysis of high speed rotating beams. Computers and Structures 87 (2009) 254-265.
DOI: 10.1016/j.compstruc.2008.09.008
Google Scholar
[11]
C. Grabowik and K. Kalinowski, Object-Oriented Models in an Integration of CAD/CAPP/CAP Systems. Hybrid Artificial Intelligent Systems, Part II Book Series: Lecture Notes in Artificial Intelligence 6679 (2011) 405-412.
DOI: 10.1007/978-3-642-21222-2_49
Google Scholar
[12]
C. Grabowik; K. Kalinowski and Z. Monica, Integration of the CAD/CAPP/PPC systems. Journal of Materials Processing Technology, 164, 1358-1368 (2005).
DOI: 10.1016/j.jmatprotec.2005.02.036
Google Scholar
[13]
K. Kalinowski, Scheduling of production orders with assembly operations and alternatives. Flexible Automation and Intelligent Manufacturing, Proc. Int. Conf. FAIM 2009, University of Teesside, Middlesbrough, UK (2009) 85.
Google Scholar
[14]
K. Kalinowski, Decision making stages in production scheduling of complex products. Journal of Machine Engineering, 11, 1-2 (2011) 68-77.
Google Scholar
[15]
H. Ozturk, In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elements in Analysis and Design 47 (2011) 229-236.
DOI: 10.1016/j.finel.2010.10.003
Google Scholar
[16]
A. Tylikowski, Dynamic Stability of Nonlinear Antisymmetrically-Laminated Cross-Ply Rectangular Plates. Journal of Applied Mechanics-Transactions of the ASME 56, 2 (1989) 375-381.
DOI: 10.1115/1.3176092
Google Scholar
[17]
A. Tylikowski, Dynamic stability of rotating composite shafts. Mechanics Research Communications 23, 2 (1996) 175-180.
DOI: 10.1016/0093-6413(96)00010-9
Google Scholar
[18]
A. Tylikowski, dynamic stability of nonlinear antisymmetrically laminated angle-ply plates. International Journal of Non-Linear Mechanics 28, 3 (1993) 291-300.
DOI: 10.1016/0020-7462(93)90036-k
Google Scholar
[19]
S. Zolkiewski, Dynamic flexibility of the supported-clamped beam in transportation, Journal of Vibroengineering 13, 4 (2011) 810-816.
Google Scholar
[20]
S. Zolkiewski, Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin American Journal of Solids and Structures 10 (2013) 39-57.
DOI: 10.1590/s1679-78252013000100005
Google Scholar
[21]
S. Zolkiewski, Dynamical flexibility of the free-free damped beam in transportation. Archives of Control Sciences 19, LV, 4 (2009) 423-436.
Google Scholar
[22]
S. Zolkiewski, Damped vibrations problem of beams fixed on the rotational disk. International Journal of Bifurcation and Chaos 21, 10 (2011) 3033-3041.
DOI: 10.1142/s0218127411030337
Google Scholar
[23]
S. Zolkiewski, Dynamical flexibility of complex damped systems vibrating transversally in transportation. Solid State Phenomena 164 (2010) 339-342.
DOI: 10.4028/www.scientific.net/ssp.164.339
Google Scholar
[24]
S. Zolkiewski, Numerical application for dynamical analysis of rod and beam systems in transportation. Solid State Phenomena 164 (2010) 343-348.
DOI: 10.4028/www.scientific.net/ssp.164.343
Google Scholar
[25]
S. Zolkiewski, Attenuation-frequency characteristics of beam systems in spatial motion. Solid State Phenomena 164 (2010) 349-354.
DOI: 10.4028/www.scientific.net/ssp.164.349
Google Scholar
[26]
L. Zone-Ching and L. Don-Tsun, Dynamic deflection analysis of a planar robot, Computers and Structures 53, 4, 17 (1994) 947-960.
DOI: 10.1016/0045-7949(94)90382-4
Google Scholar