[1]
A.F. Abate, M. Guida, P. Leoncini, M. Nappi, and S. Ricciardi, A haptic-based approach to virtual training for aerospace industry, Journal of Visual Languages & Computing, 20, (5), (2009) pp.318-325.
DOI: 10.1016/j.jvlc.2009.07.003
Google Scholar
[2]
K. Anam, and A.A. Al-Jumaily, Active Exoskeleton Control Systems: State of the Art, Procedia Engineering, , 41, (2012), pp.988-994.
DOI: 10.1016/j.proeng.2012.07.273
Google Scholar
[3]
V. Bartenbach, C. Sander, M. Poschl, K. Wilging, T. Nelius, F. Doll, W. Burger, C. Stockinger, A. Focke, and T. Stein, The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation, J Neurosci Methods, 213, (2), (2013).
DOI: 10.1016/j.jneumeth.2012.12.006
Google Scholar
[4]
T. Butnaru, Interfaces used to simulate articulated mechanical systems with force feedback in virtual reality, PhD Thesis, Transilvania University of Brasov, (2007).
Google Scholar
[5]
P. Chotiprayanakul, D.K. Liu, and G. Dissanayake, Human–robot–environment interaction interface for robotic grit-blasting of complex steel bridges, Automation in Construction, 27, (2012), pp.11-23.
DOI: 10.1016/j.autcon.2012.04.014
Google Scholar
[6]
M.S. Erden, and B. Marić, Assisting manual welding with robot, Robotics and Computer-Integrated Manufacturing, 27, (4), (2011), pp.818-828.
DOI: 10.1016/j.rcim.2011.01.003
Google Scholar
[7]
S. Ganguly, A. Garg, A. Pasricha, and S.K. Dwivedy, Control of pneumatic artificial muscle system through experimental modelling, Mechatronics, 22, (8), (2012), pp.1135-1147.
DOI: 10.1016/j.mechatronics.2012.09.010
Google Scholar
[8]
C. Garre, and M.A. Otaduy, Haptic rendering of objects with rigid and deformable parts, Computers & Graphics, 34, (6), (2010), pp.689-697.
DOI: 10.1016/j.cag.2010.08.006
Google Scholar
[9]
T. Haidegger, and Z. Benyo, Surgical robotic support for long duration space missions, Acta Astronautica, 63, (7-10), (2008), pp.996-1005.
DOI: 10.1016/j.actaastro.2008.01.005
Google Scholar
[10]
J. Krüger, T.K. Lien, and A. Verl, Cooperation of human and machines in assembly lines, CIRP Annals - Manufacturing Technology, 58, (2), (2009), pp.628-646.
DOI: 10.1016/j.cirp.2009.09.009
Google Scholar
[11]
D. Pisla, A. Szilaghyi, C. Vaida, N. Plitea, Kinematics and workspace modeling of a new hybrid robot used in minimally invasive surgery, Robotics and Computer-Integrated Manufacturing, Vol. 29, Issue 2, (2013), pp.463-474.
DOI: 10.1016/j.rcim.2012.09.016
Google Scholar
[12]
S. Ricciardi, M. Nappi, L. Paolino, M. Sebillo, G. Vitiello, G. Gigante, D. Pascarella, L. Travascio, and A. Vozella, Dependability issues in visual–haptic interfaces, Journal of Visual Languages & Computing, 21, (1), (2010), pp.33-40.
DOI: 10.1016/j.jvlc.2009.07.001
Google Scholar
[13]
S. -D. Stan, R. Balan, V. Maties, Modelling, design and control of 3DOF medical parallel robot, Journal Mechanika, No. 6(74), (2008), pag. 68-71.
Google Scholar
[14]
P. van der Smagt, M. Grebenstein, H. Urbanek, N. Fligge, M. Strohmayr, G. Stillfried, J. Parrish, and A. Gustus, Robotics of human movements, Journal of physiology, Paris, 103, (3-5), (2009), pp.119-132.
DOI: 10.1016/j.jphysparis.2009.07.009
Google Scholar
[15]
C. Ying, Z. Jia-fan, Y. Can-jun, and N. Bin, Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve, Mechatronics, 17, (6), (2007), pp.325-335.
DOI: 10.1016/j.mechatronics.2007.04.001
Google Scholar