[1]
Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of the stress-strain models., Engineering Structures, 49: 1068-1088.
DOI: 10.1016/j.engstruct.2012.06.010
Google Scholar
[2]
Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Engineering Structures, 51: 188-199.
DOI: 10.1016/j.engstruct.2013.01.017
Google Scholar
[3]
Ozbakkaloglu, T. (2013). Concrete-filled FRP Tubes: Manufacture and testing of new forms designed for improved performance., Journal of Composites for Construction, ASCE, 17(2): 280 -291.
DOI: 10.1061/(asce)cc.1943-5614.0000334
Google Scholar
[4]
Ozbakkaloglu, T. (2013). Behavior of Square and Rectangular Ultra High-Strength Concrete-Filled FRP Tubes under Axial Compression., Composites Part B. 54: 97-111.
DOI: 10.1016/j.compositesb.2013.05.007
Google Scholar
[5]
Ozbakkaloglu, T., and Vincent, T. (2013). Axial compressive behavior of high-strength concrete-filled FRP tubes., Journal of Composites for Construction, ASCE. 10. 1061/(ASCE)CC. 1943-5614. 0000410.
DOI: 10.1061/(asce)cc.1943-5614.0000410
Google Scholar
[6]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High- Strength Concrete., Composites Part B. 50: 413-428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[7]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Construction and Building Materials. 47: 814-826.
DOI: 10.1016/j.conbuildmat.2013.05.085
Google Scholar
[8]
Teng, J. G., Yu, T., and Wong, Y.L. (2004). Behavior of hybrid FRP-concrete-steel double-skin tubular columns., Proc. 2nd Int. Conf. on FRP Composites in Civil Engineering, Adelaide, Australia, 811-818.
DOI: 10.1201/9780203970850.ch91
Google Scholar
[9]
Ozbakkaloglu, T., and Saatcioglu, M. (2006). Seismic behavior of high-strength concrete columns confined by fiber reinforced polymer tubes., Journal of Composites for Construction, ASCE, 10(6): 538-549.
DOI: 10.1061/(asce)1090-0268(2006)10:6(538)
Google Scholar
[10]
Ozbakkaloglu, T., and Saatcioglu, M. (2007). Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork., Journal of Structural Engineering, ASCE, 133(1): 44-56.
DOI: 10.1061/(asce)0733-9445(2007)133:1(44)
Google Scholar
[11]
Saatcioglu, M., Ozbakkaloglu, T., and Elnabelsy, G. (2009). Seismic Behavior and Design of Reinforced Concrete Columns Confined with FRP Stay-in-place Formwork., ACI Special Publication SP-257, 149-170.
DOI: 10.14359/20245
Google Scholar
[12]
Idris, Y. and Ozbakkaloglu, T. (2013). Seismic behavior of high-strength concrete-filled FRP tube columns., Journal of Composites for Construction, ASCE, 10. 1064/(ASCE)CC. 1943-5614. 0000388.
DOI: 10.1061/(asce)cc.1943-5614.0000388
Google Scholar
[13]
Wong, Y.L., Yu, T., Teng, J.G., and Dong, S.L. (2008). Behavior of FRP-confined concrete in annular section columns., Composites: Part B, 39: 451-466.
DOI: 10.1016/j.compositesb.2007.04.001
Google Scholar
[14]
Ozbakkaloglu, T., and Louk Fanggi, B. (2013).
Google Scholar
[15]
Louk Fanggi, B.A., and Ozbakkaloglu, T. (2013). Compressive behavior of aramid FRP-HSC-Steel double-skin tubular columns., Construction and Building Materials: 48: 554-565.
DOI: 10.1016/j.conbuildmat.2013.07.029
Google Scholar
[16]
Ozbakkaloglu, T., and Akin, E. (2012). Behavior of FRP confined normal-and high-strength concrete under cyclic axial compression., Journal of Composites for Construction, ASCE, 16 (4): 451-463.
DOI: 10.1061/(asce)cc.1943-5614.0000273
Google Scholar
[17]
Lim, J., and Ozbakkaloglu, T. (2013). Confinement model for FRP-confined high-strength concrete., Journal of Composite for Construction, ASCE, doi: 10. 1061/(ASCE)CC. 1943-5614. 0000376.
DOI: 10.1061/(asce)cc.1943-5614.0000376
Google Scholar