Influence of Concrete-Filling Inner Steel Tube on Compressive Behavior of Double-Skin Tubular Columns

Article Preview

Abstract:

This paper reports on a part of an ongoing experimental program at the University of Adelaide on the behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs). Influence of concrete-filling inner steel tube on the compressive behavior of FRP-concrete-steel DSTCs was investigated experimentally through the test of 8 normal-and high-strength concrete DSTCs. The results of the experimental study indicate that concrete-filling inner steel tubes of DSTCs results in a slightly increase in the compressive strength and decrease in the ultimate strain of concrete in DSTCs, compared to companion DSTCs with hollow inner steel tubes. The results also indicate that concrete in both types of DSTCs is confined effectively by FRP and steel tubes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 838-841)

Pages:

535-539

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of the stress-strain models., Engineering Structures, 49: 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[2] Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Engineering Structures, 51: 188-199.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[3] Ozbakkaloglu, T. (2013). Concrete-filled FRP Tubes: Manufacture and testing of new forms designed for improved performance., Journal of Composites for Construction, ASCE, 17(2): 280 -291.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[4] Ozbakkaloglu, T. (2013). Behavior of Square and Rectangular Ultra High-Strength Concrete-Filled FRP Tubes under Axial Compression., Composites Part B. 54: 97-111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[5] Ozbakkaloglu, T., and Vincent, T. (2013). Axial compressive behavior of high-strength concrete-filled FRP tubes., Journal of Composites for Construction, ASCE. 10. 1061/(ASCE)CC. 1943-5614. 0000410.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar

[6] Vincent, T., and Ozbakkaloglu, T. (2013). Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High- Strength Concrete., Composites Part B. 50: 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[7] Vincent, T., and Ozbakkaloglu, T. (2013). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Construction and Building Materials. 47: 814-826.

DOI: 10.1016/j.conbuildmat.2013.05.085

Google Scholar

[8] Teng, J. G., Yu, T., and Wong, Y.L. (2004). Behavior of hybrid FRP-concrete-steel double-skin tubular columns., Proc. 2nd Int. Conf. on FRP Composites in Civil Engineering, Adelaide, Australia, 811-818.

DOI: 10.1201/9780203970850.ch91

Google Scholar

[9] Ozbakkaloglu, T., and Saatcioglu, M. (2006). Seismic behavior of high-strength concrete columns confined by fiber reinforced polymer tubes., Journal of Composites for Construction, ASCE, 10(6): 538-549.

DOI: 10.1061/(asce)1090-0268(2006)10:6(538)

Google Scholar

[10] Ozbakkaloglu, T., and Saatcioglu, M. (2007). Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork., Journal of Structural Engineering, ASCE, 133(1): 44-56.

DOI: 10.1061/(asce)0733-9445(2007)133:1(44)

Google Scholar

[11] Saatcioglu, M., Ozbakkaloglu, T., and Elnabelsy, G. (2009). Seismic Behavior and Design of Reinforced Concrete Columns Confined with FRP Stay-in-place Formwork., ACI Special Publication SP-257, 149-170.

DOI: 10.14359/20245

Google Scholar

[12] Idris, Y. and Ozbakkaloglu, T. (2013). Seismic behavior of high-strength concrete-filled FRP tube columns., Journal of Composites for Construction, ASCE, 10. 1064/(ASCE)CC. 1943-5614. 0000388.

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[13] Wong, Y.L., Yu, T., Teng, J.G., and Dong, S.L. (2008). Behavior of FRP-confined concrete in annular section columns., Composites: Part B, 39: 451-466.

DOI: 10.1016/j.compositesb.2007.04.001

Google Scholar

[14] Ozbakkaloglu, T., and Louk Fanggi, B. (2013).

Google Scholar

[15] Louk Fanggi, B.A., and Ozbakkaloglu, T. (2013). Compressive behavior of aramid FRP-HSC-Steel double-skin tubular columns., Construction and Building Materials: 48: 554-565.

DOI: 10.1016/j.conbuildmat.2013.07.029

Google Scholar

[16] Ozbakkaloglu, T., and Akin, E. (2012). Behavior of FRP confined normal-and high-strength concrete under cyclic axial compression., Journal of Composites for Construction, ASCE, 16 (4): 451-463.

DOI: 10.1061/(asce)cc.1943-5614.0000273

Google Scholar

[17] Lim, J., and Ozbakkaloglu, T. (2013). Confinement model for FRP-confined high-strength concrete., Journal of Composite for Construction, ASCE, doi: 10. 1061/(ASCE)CC. 1943-5614. 0000376.

DOI: 10.1061/(asce)cc.1943-5614.0000376

Google Scholar