Molecular Simulation Study Conformation and Energy of Polyaniline/Graphite Composites

Article Preview

Abstract:

Under the COMPASS (condensed-phase optimized molecular potentials for atomistic simulation studies) force field, the MD (molecular dynamics) simulation was applied to Polyaniline/ Graphite Composites. In this paper, we briefly introduced the constructive process of the composite system by means of MD simulation. The stability and mechanism of five intercalation composites were studied with microcosmic figure and variational energy under the invariable NVT ensemble. The results indicate that the area of graphite sheets is particularly important in the intercalation bonding process. It is the key to control the final product. The area selection is based on the molecular weight and volume of the intercalated organic polymer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-137

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Gordon, Chemical Week, 136 (1985) 20-24.

Google Scholar

[2] A. G. MacDiarmid, S. L. Mu and N. L. Somasiri, Mol. Crysl. Liq. Cryst., 121(1985) 187-190.

Google Scholar

[3] A. P. Monknuln, Mol. Crysl. Liq. Cryst., 218 (1992) 253-260.

Google Scholar

[4] C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani and G. Gigli, Org. Elec., 9 (2008) 401-406.

Google Scholar

[5] N. F. Heinig, N. Kharbanda, M. R. Pynenburg, X. J. Zhou, G. A. Schultz and K. T. Leung, Mat. Let., 62 (2008) 2285-2288.

DOI: 10.1016/j.matlet.2007.11.094

Google Scholar

[6] H. Bai, Ch. Li, F. Chen and G.Q. Shi, Polymer, 48 (2007) 5259-5267.

Google Scholar

[7] A. G. Macdiarmid, Synth. Met., 84 (1997) 27-34.

Google Scholar

[8] X. R. Zeng and Tze Man Ko, Polymer, 39 (1998) 1187-1195.

Google Scholar

[9] Y. W. Sheng and El. Ruckenstein, Macromolecules, 33 (2000) 1129-1131.

Google Scholar

[10] Sh. Wang, H.M. Bao, P.Y. Yang and G. Chen, Anal. Chim. Acta., 612 (2008) 182-189.

Google Scholar

[11] F.Y. Chuang and S. M. Yang, J. Coll. Inter. Sci., 320 (2008) 194-201.

Google Scholar

[12] Kh. Ghanbari, M. F. Mousavi, M. Shamsipur, M. S. Rahmanifar and H. Heli, Synth. Met., 156 (2006) 911-916.

DOI: 10.1016/j.synthmet.2006.05.006

Google Scholar

[13] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 30 (1981) 139-142.

Google Scholar

[14] M. Inagaki, J. Mater. Res., 4 (1989) 1560-1568.

Google Scholar

[15] R.B. Guo, W.W. Han, Z.L. Mo, L.L. Li and C. Feng. J. Mater. Res., 27 (2007) 300-306.

Google Scholar

[16] A. R. Leach, Molecular Modelling-Principles and Applications, Prentice Hall, (2001).

Google Scholar