Tensile Properties of 15wt. %TiB2/7055 Composite Fabricated by In Situ Method

Article Preview

Abstract:

7055 aluminum alloy reinforced with 15wt. % TiB2 particulates was synthesized by in situ method, the microstructure and tensile properties were investigated. There are a few particulate clusters in the matrix. The elastic modulus and hardness of the composite are higher than that of the matrix alloy, but the yield strength and ultimate tensile strength decrease. The decrease of strength is attributed to the presence of TiB2 particulate cluster and residual reaction slag.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-169

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev. 39 (1994) 1-23.

Google Scholar

[2] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites-a review J. Mater. Sci. 26(1991) 1137-1156.

DOI: 10.1007/bf00544448

Google Scholar

[3] D.B. Miracle, Metal matrix composites - From science to technological significance. Compos. Sci. Technol. 65(2005) 2526-2540.

DOI: 10.1016/j.compscitech.2005.05.027

Google Scholar

[4] Girot, F.A., J.M. Quenisset ,R. Naslain, Discontinuously-reinforced aluminum matrix composites Compos. Sci. Technol. 30(1987) 155-184.

DOI: 10.1016/0266-3538(87)90007-8

Google Scholar

[5] Dong Chen, Yongkang Le, Huanhuan Sun, Naiheng Ma, Xianfeng Li, Haowei Wang. Mechanical properties and microstructure of in situ TiB2-7055 composites, Chinese J of Aero. 19(2006): 66-70.

Google Scholar

[6] Tszeng, T.C., The effects of particle clustering on the mechanical behavior of particle reinforced composites, Compos Part B-Eng. 29 (1998) 299-308.

DOI: 10.1016/s1359-8368(97)00031-0

Google Scholar

[7] Chawla, N. and Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Adv Funct Mater. 3 (2001) 357-370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[8] M. M. Sharma, C. W. Ziemian,T. J. Eden, Processing and Composition Effects on the Fracture Behavior of Spray-Formed 7XXX Series Al Alloys, J. Mater. Eng. Perform. 19 (2010) 1344-1351.

DOI: 10.1007/s11665-010-9624-2

Google Scholar

[9] M. Manoharan and J.J. Lewandowski, Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite, Mater. Sci. Eng. A. 150 (1992) 178-186.

DOI: 10.1016/0921-5093(92)90110-m

Google Scholar

[10] L. Lu,M.O. Lai and Y. Su, In situ TiB2 reinforced Al alloy composites Scri. Mater. 45 (2001) 1017-1023.

DOI: 10.1016/s1359-6462(01)01128-9

Google Scholar

[11] T.J.A. Doel, P. Bowen, Tensile properties of particulate-reinforced metal matrix composites Compos. Part. A. 27(1996) 655-665.

DOI: 10.1016/1359-835x(96)00040-1

Google Scholar

[12] S. Hong, H. Kim, D. Huh and C. Suryanarayana, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Acta Mater. 347 (2003) 198-204.

DOI: 10.1016/s0921-5093(02)00593-2

Google Scholar