Direct Synthesis and Characterization of Three-Dimensional Graphene Foam

Article Preview

Abstract:

Three-dimensional graphene foam (GF) is synthesized by chemical vapor deposition (CVD) at ~1000°C under ambient pressure. Then it is characterized by scanning electron microscopy (SEM) and laser Raman spectroscopy, the results indicate that GF has changed the surface morphology of Ni foam, and ~ 98% of the GF are fewlayer. At last, the surface wettability of GF is investigated, which shows that it is hydrophobic. The special three-dimensional structure and excellent properties of GF make it a candidate for a range of applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-292

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.O. Weiss, H.L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X.F. Duan: Adv. Mater. Vol. 24 (2012), p.5782.

Google Scholar

[2] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[3] Geim A K, Novoselov K S: Nature Mater. Vol. 6 (2007), p.183.

Google Scholar

[4] Balandin A A: Nano Lett. Vol. 8 (2008), p.902.

Google Scholar

[5] Niyogi S: J. Am. Chem. Soc. Vol. 128 (2006), p.7720.

Google Scholar

[6] Luo Z T, Lu Y, Somers L A, Johnson A T C: J. Am. Chem. Soc. Vol. 131 (2009), p.898.

Google Scholar

[7] Yin J, Zhang Z H, Li X M, Zhou J X, Guo W L: Nano Lett. Vol. 12 (2012), p.1736.

Google Scholar

[8] Yin S Y, Zhang Y Y, Kong J H, Zou C J, Li C M, Lu X H, Ma J, Boey F Y C, Chen X D: ACS Nano Vol. 5 (2011), p.3831.

Google Scholar

[9] Ahn H S, Jang J W, Seol M, Kim J M, Yun D J, Park C, Kim H, Youn D H, Kim J Y, Park G, Park S C, Kim J M, Yu D I, Yong K, Kim M H, Lee J S: Science reports Vol. 1396 (2013) p.1.

DOI: 10.1038/srep01396

Google Scholar

[10] Z. Zheng, Z.W. Peng, Z.Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, and J.M. Tour: ACS Nano Vol. 5 (2011), p.8187.

Google Scholar

[11] Y.C. Zhao, L. Song, K. Deng, Z. Liu, Z.X. Zhang, Y.L. Yang, C. Wang, H.F. Yang, A.Z. Jin, Q. Luo, C.Z. Gu, S.S. Xie, and L.F. Sun: Adv. Mater. Vol. 20 (2008), p.1772.

Google Scholar

[12] F. Yu, L.J. Hu, H.Q. Zhou, C.Y. Qiu, H.C. Yang, M.J. Chen, J.L. Lu, and L.F. Sun: Journal of Nanoscience and Nanotechnology Vol. 13 (2013), p.1335.

Google Scholar

[13] H.C. Yang, M.J. Chen, H.Q. Zhou, C.Y. Qiu, L.J. Hu, F. Yu, W.G. Chu, S.Q. Sun, and L.F. Sun: The Journal of Physical Chemistry C Vol. 115 (2011), p.16844.

Google Scholar

[14] S. Ghosh, A.K. Sood, N. Kumar: Science Vol. 299 (2003), p.1042.

Google Scholar

[15] Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng: Nature Mater. Vol. 10 (2011), p.424.

Google Scholar

[16] H.Q. Zhou, C.Y. Qiu, H.C. Yang, F. Yu, M.J. Chen, L.J. Hu, Y.J. Guo, L.F. Sun: Chemical Physics Letters Vol. 501 (2011), p.475.

Google Scholar

[17] Z. Liu, K.H. Zheng, L.J. Hu, J. Liu, C.Y. Qiu, H.Q. Zhou, H.C. Yang, M. Li, C.Z. Gu, S.S. Xie, L.J. Qiao, and L.F. Sun: Adv. Mater. Vol. 22 (2010), p.1000.

Google Scholar