[1]
Y.B. Wang, Y.F. Zheng, Y. Liu, Effect of short-time direct current heating on phase transformation and superelasticity of Ti–50. 8at. %Ni alloy, J. Alloys Compound. 477 (2009) 764–767.
DOI: 10.1016/j.jallcom.2008.10.131
Google Scholar
[2]
G. Song, N. Ma, H. Li, Applications of shape memory alloys in civil structures, Eng. Struct. 28 (2006) 1266–1274.
DOI: 10.1016/j.engstruct.2005.12.010
Google Scholar
[3]
J. Uchil, K.G. Kumara, K.K. Mahesh, Effect of thermal cycling on R-phase stability in a NiTi shape memory alloy, Mater. Sci. Eng. A332 (2002) 25–28.
DOI: 10.1016/s0921-5093(01)01711-7
Google Scholar
[4]
T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys, Acta Mater. 58 (2010) 1850–1860.
DOI: 10.1016/j.actamat.2009.11.028
Google Scholar
[5]
P. Sittner, M. Landa, P. Lukas, V. Novak, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mech. Mater. 38 (2006) 475–492.
DOI: 10.1016/j.mechmat.2005.05.025
Google Scholar
[6]
H. Zhao, C.Q. Liang, J.T. Liu, Y.X. Tong, F. Chen, B. Tian, L. Li, and Y.F. Zheng, Effect of Aging Treatment on Superelasticity of a Ti48. 8Ni50. 8V0. 4 Alloy, JMEPEG 21 (2012) 2566–2571.
DOI: 10.1007/s11665-012-0373-2
Google Scholar
[7]
J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-Precipitation during Aging of Ni-rich NiTi Shape Memory Alloys And its Influence on Martensitic Phase Transformations, Acta Mater. 50 (2002) 4255.
DOI: 10.1016/s1359-6454(02)00257-4
Google Scholar
[8]
M.C. Carroll, Ch. Somsen, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys, Scripta Mat. 50 (2004) 187-192.
DOI: 10.1016/j.scriptamat.2003.09.020
Google Scholar
[9]
G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, K. Otsuka, Origin of abnormal multistage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys, Acta Mat. 52 (2004) 4351-4362.
DOI: 10.1016/j.actamat.2004.06.002
Google Scholar
[10]
Miyazaki, S., Wayman, C.M., The R-phase transition and associated shape memory mechanism in TiNi single crystals. Acta Metall. 35 (1987) 181–192.
DOI: 10.1016/0001-6160(88)90037-5
Google Scholar
[11]
Y. Liu and S. P. Calvin, Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys, Acra Mater. Vol. 45, 11 (1997) 4431-4439.
DOI: 10.1016/s1359-6454(97)00144-4
Google Scholar
[12]
M.E. Mitwally, M. Farag, Effect of coldwork and annealing on the structure and characteristics of NiTi alloy, Mater. Sci. Eng. A 519 (2009) 155-166.
Google Scholar
[13]
B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice-Hall Inc., New Jersey, (2001).
Google Scholar
[14]
M. Nishida, C.M. Wayman, Electron Microscopy Studies of the Premartensitic, Transformations in an Aged Ti-51at%Ni Shape Memory Alloy, Metallography. 21 (1988) 255-273.
DOI: 10.1016/0026-0800(88)90024-9
Google Scholar
[15]
Y. Zhou, J. Zhang, G. Fan, X. Ding, J. Sun, X. Ren, K. Otsuka, Origin of 2-stage R-phase transformation in low-temperature aged Ni-rich Ti–Ni alloys, Acta Mater. 53 (2005) 5365–5377.
DOI: 10.1016/j.actamat.2005.08.013
Google Scholar
[16]
X. Ren, N. Miura, J. Zhang, K. Otsuka, M. Koiwa, T. Suzuki, Mater Sci Eng A 2001; 312: 196–206.
Google Scholar