[1]
K.N.M. T.W. Duerig, D. Stoeckel and C.M. Wayman, Engineering aspects of shape memory alloys, Materials & Design, 11 (1990) 301.
Google Scholar
[2]
R.D. James, K.F. Hane, Martensitic transformations and shape-memory materials, Acta Materialia, 48 (2000) 197-222.
DOI: 10.1016/s1359-6454(99)00295-5
Google Scholar
[3]
C.M.W. K. Otsuka, Shape Memory Materials, reprint, illustrated ed., Cambridge University Press, (1999).
Google Scholar
[4]
N. Suresh, U. Ramamurty, Effect of aging on mechanical behavior of single crystal Cu–Al–Ni shape memory alloys, Materials Science and Engineering: A, 454-455 (2007) 492-499.
DOI: 10.1016/j.msea.2006.11.069
Google Scholar
[5]
J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A, 273–275 (1999) 134-148.
DOI: 10.1016/s0921-5093(99)00293-2
Google Scholar
[6]
R. Desroches, B. Smith, Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations, Journal of Earthquake Engineering, 8 (2004) 415-429.
DOI: 10.1080/13632460409350495
Google Scholar
[7]
J. Van Humbeeck, S. Kustov, Active and passive damping of noise and vibrations through shape memory alloys: Applications and mechanisms, Smart Materials and Structures, 14 (2005) S171-S185.
DOI: 10.1088/0964-1726/14/5/001
Google Scholar
[8]
D.W. Roh, E.S. Lee, Y.G. Kim, Effects of ordering type and degree on monoclinic distortion of 18R-type martensite in Cu-Zn-Al alloys, MTA, 23 (1992) 2753-2760.
DOI: 10.1007/bf02651754
Google Scholar
[9]
P.R. I. Hurtado, J. Van Humbeeck And L. Delaey, A fundamental study of the X-phase preciptation in Cu-Al-Ni-Ti-(Mn) shape memory alloys, Acta Materialia, 44 (1995) 3299-3306.
DOI: 10.1016/1359-6454(95)00435-1
Google Scholar
[10]
Y. Matsukawa, T. Suda, S. Ohnuki, C. Namba, Microstructure and mechanical properties of neutron irradiated TiNi shape memory alloy, Journal of Nuclear Materials, 271–272 (1999) 106-110.
DOI: 10.1016/s0022-3115(98)00700-4
Google Scholar
[11]
C. Tatar, R. Zengin, The effects of γ-irradiation on some physical properties of Cu–13. 5 wt. %Al–4 wt. %Ni shape memory alloy, Materials Letters, 59 (2005) 3304-3307.
DOI: 10.1016/j.matlet.2005.04.062
Google Scholar
[12]
C. Tatar, Gamma irradiation-induced evolution of the transformation temperatures and thermodynamic parameters in a CuZnAl shape memory alloy, Thermochim. Acta, 437 (2005) 121-125.
DOI: 10.1016/j.tca.2005.06.030
Google Scholar
[13]
A.M. Ibrahim, L.I. Soliman, Effect of γ-irradiation on optical and electrical properties of Se1−xTex, Radiation Physics and Chemistry, 53 (1998) 469-475.
DOI: 10.1016/s0969-806x(98)00016-4
Google Scholar
[14]
L.I. Chyrko, V.I. Chyrko, E.U. Grynik, O.V. Drogayev, M.P. Krulikovska, V.I. Sugakov, Gamma-irradiation effect on heterogeneous short-range order in Fe+12 at. % Al alloy, Journal of Nuclear Materials, 279 (2000) 162-166.
DOI: 10.1016/s0022-3115(00)00024-6
Google Scholar
[15]
T. Kutsukake, H. Somei, Y. Ohki, K. Nagasawa, F. Kaneko, Gamma-irradiation effect on high-Tc superconductor YBa2Cu3O7-x, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 28 (1989) 1393-1394.
DOI: 10.1143/jjap.28.l1393
Google Scholar
[16]
R.J. a.C. Salzbrenner, M., On the thermodynamics of thermoelastic martensitic transformations, Acta Metallurgica 27 (1979) 739-748.
DOI: 10.1016/0001-6160(79)90107-x
Google Scholar
[17]
Z. Nishiyama, M.E. Fine, C.M. Wayman, Martensitic transformation, Academic Press, (1978).
Google Scholar
[18]
J. Yu, Y. Chen, Y. Wang, W. Zhang, S. Xu, T. Noda, Research on plasma-facing component materials, Journal of Nuclear Materials, 233–237, Part 1 (1996) 771-775.
DOI: 10.1016/s0022-3115(96)00207-3
Google Scholar
[19]
R. Rangel, D.H. Galván, E. Adem, P. Bartolo-Pérez, M.B. Maple, Microstructural study of Y1Ba2Cu3O7-x/Ag samples irradiated with 60Co γ rays at high doses, Superconductor Science and Technology, 11 (1998) 550-557.
DOI: 10.1088/0953-2048/11/6/002
Google Scholar