Effect of Elements Cerium and Lanthanum on Eutectic Solidification of Al-Si-Cu near Eutectic Cast Alloy

Article Preview

Abstract:

The properties of Al-Si-Cu cast alloys are strongly affected by eutectic Al-Si and Al-Cu phases. The characteristic parameters of these two phases with additions cerium 1wt % (Ce) and lanthanum1 wt % (La) were investigated in Al-11Si-2Cu near eutectic alloy using computer-aided cooling curve thermal analysis. As a result, the La additive showed the highest (TNAl-Si) while the Ce additive showed very little effect. In addition, the growth temperature (TGAl-Si) is decreased by adding Ce compared to the base alloy and La addition. Additives showed an increase of recalescence magnitude (TRAl-Si). Addition La and Ce increased the nucleation and growth temperature of Al-Cu phase. The microstructure analysis on the silicon morphology showed that 1 wt % La and 1 wt % Ce additions play refiner role in Al-Si-Cu near eutectic alloys. Findings are also confirmed by aspect ratio of eutectic silicon phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-122

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ahmad, N. Talib, M. Asmael, Applied Mechanics and Materials, 315 (2013) 856-860.

Google Scholar

[2] R. Ahmad, N. Sa'Ude, Applied Mechanics and Materials, 121 (2012) 1620-1624.

Google Scholar

[3] R. Rana, R. Purohit, S. Das.

Google Scholar

[4] R. Ahmad, D. Gethin, R. Lewis, Applied Mathematical Modelling, 36 (2012) 4760-4788.

Google Scholar

[5] S.P. Nikanorov, M.P. Volkov, V.N. Gurin, Y.A. Burenkov, L.I. Derkachenko, B.K. Kardashev, L.L. Regel, W.R. Wilcox, Materials Science and Engineering: A, 390 (2005) 63-69.

DOI: 10.1016/j.msea.2004.07.037

Google Scholar

[6] M. Karimian, A. Ourdjini, M. Idris, M. Bsher, A. Asmael, Advanced Materials Research, 264 (2011) 295-300.

DOI: 10.4028/www.scientific.net/amr.264-265.295

Google Scholar

[7] P. Hu, Y. Su, W.P. Chen, Y. Jiang, Advanced Materials Research, 652 (2013) 1023-1029.

Google Scholar

[8] D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang, Journal of Alloys and Compounds, 352 (2003) 84-88.

Google Scholar

[9] X.M. Liu, Z. Liu, Y.M. Hu, Advanced Materials Research, 139 (2010) 693-697.

Google Scholar

[10] Y. -C. Tsai, C. -Y. Chou, S. -L. Lee, C. -K. Lin, J. -C. Lin, S. Lim, Journal of Alloys and Compounds, 487 (2009) 157-162.

Google Scholar

[11] S. Farahany, A. Ourdjini, M. Idrsi, S. Shabestari, Thermochimica Acta, (2013).

Google Scholar

[12] M. Krupiński, K. Labisz, L. Dobrzański, Z. Rdzawski, Archieves of Foundry Engineering, 10 (2010) 79-82.

Google Scholar

[13] S. Farahany, A. Ourdjini, M. Idris, S. Shabestari, Journal of Thermal Analysis and Calorimetry, 1-13.

Google Scholar

[14] H. Yi, D. Zhang, T. Sakata, H. Mori, Journal of Alloys and Compounds, 354 (2003) 159-164.

Google Scholar

[15] L.F. Mondolfo, Aluminum alloys: structure and properties, Butterworths London, (1976).

Google Scholar

[16] A. Anasyida, A. Daud, M. Ghazali, Materials & Design, 31 (2010) 365-374.

Google Scholar