[1]
A.P. Mariano, R.C. Tomasella, D.L.M. Oliveira, J.C., De Angelis, Biodegradability of diesel and biodiesel blends. African Journal of Biotechnology, 7(9) (2008) pp.1323-1328.
Google Scholar
[2]
A., Demirbas. Biodiesel: a realistic fuel alternative for Diesel engines. London: Springer, (2008).
Google Scholar
[3]
Department of efficiency and renewable energy, U.S., Fact Sheet of biodiesel blends. Accessed on October 7, 2012, from http: /www. biodiesel. org/docs/ffs-basics/clean-cities-fact-sheet-biodiesel-blends-april 2008. pdf?sfvrsn=4.
DOI: 10.2172/1009258
Google Scholar
[4]
A. Demirbas, Progress and recent trends in biodiesel fuels. Energy conversion and management, 50 (2009) pp.14-34.
DOI: 10.1016/j.enconman.2008.09.001
Google Scholar
[5]
R.R. Eve, Remediation of petroleum contaminated soils: biological, physical and chemical process. USA: Lewis Publishers, (1998).
Google Scholar
[6]
G. Knothe, C.A. Sharp, T.W. Ryan, Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels, 20(2006) pp.403-408.
DOI: 10.1021/ef0502711
Google Scholar
[7]
S.M., Mudge, G., Pereira Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Sci Technol Bull, 5(1999) p.353–355.
DOI: 10.1016/s1353-2561(99)00075-4
Google Scholar
[8]
S.F. Cheng, Y.M. Chou, C.L. A.N.Y., Ma, Y., Basiron, Palm Biodiesel: Gearing toward Malaysian biodiesel standard. Malaysian palm oil board. Accessed on October 7, 2012, from: http: /www. americanpalmoil. com/pdf/biodiesel/gearing%20towards%20msian%20standards.
Google Scholar
[9]
H. Rubin, N. Narkis, J. Carberry, Soil and aquifer pollution-non-aqueous phase liquid-contamination and reclamation. 1st ed. Berlin: Springer. p.109, (1998).
DOI: 10.1007/978-3-662-03674-7
Google Scholar
[10]
T. Watanabe, T. Hirayama, Genotoxicity of soil. J. Health Sci., 47(2001) pp.433-438.
Google Scholar
[11]
Environmental Protection Agency (EPA). Assessment and remediation of contaminated sediments (ARCS) program, final summary report, EPA-905-S-94-001, EPA, Chicago.
DOI: 10.1017/s0376892900039060
Google Scholar
[12]
J. Walworth, P. Andrew, J. Rayner, S. Ferguson, P., Harvey, Fine turning soil nitrogen to maximize petroleum bioremediation. Assessment and remediation contaminated sites in Arctic and cold climates (ARCSACC), (2005) pp.251-257.
Google Scholar
[13]
D.G. Linz, D. V Nakles, Environmentally acceptable endpoint in soil. American academy of environmental engineers, Annapolis, MD. (1997) pp.121-147.
Google Scholar
[14]
R. Kucerova, Application of Pseudomonas putida and Rhodococcus spp. by biodegradation of PAHs, PCBs and NEL soil samples from the hazardous waste dump in Pozdatky . Mining-Geological-Petroleum Engineering Bulletin, 18, (2006) pp.97-101.
Google Scholar
[15]
A.K. Haritash, C.P. Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard. Matter, 169, (2009). p.1–15.
DOI: 10.1016/j.jhazmat.2009.03.137
Google Scholar
[16]
K.N. Timmis,. Pseudomonas putida: a cosmopolitan opportunist par excellent. Environ Microbiol., 4, (2002) pp.779-781.
DOI: 10.1046/j.1462-2920.2002.00365.x
Google Scholar
[17]
I.P. Castro, J. Becker, K. Dohnt, Dos V.M. Santos, C. Wittmann,. Industrial biotechnology of Pseudomonas putida and related species. App. Microbiol Biotechnol., 93, (2012) pp.2279-2290.
DOI: 10.1007/s00253-012-3928-0
Google Scholar
[18]
V.A.P. Martins Dos Santos, S. H. Moore, M. Stratz, K.N. Timmis, Insights into the genomic basis of niche specificity of Pseudomonas putida 2440. Environ Microbiol., 6, (2004) pp.1264-1286.
DOI: 10.1111/j.1462-2920.2004.00734.x
Google Scholar
[19]
Z. A Malik, S. Ahmed, Degradation of petroleum hydrocarbons by oil field isolated bacterial consortia, African Journal of Biotechnology, 11(3) (2012), pp.650-658.
Google Scholar
[20]
S. B. Hamed, A. Maaroufi, A. Ghram, B.A.G. Zouhaier, M. Labat,. African Journal of Biotechnology, 12(14), (2013) pp.1636-1643.
Google Scholar
[21]
L.T. Taylor, D.M. Jones, Bioremediation of coal tar PAH in soil using biodiesel, Chemosphere 44, (2001) p.1131–1136.
DOI: 10.1016/s0045-6535(00)00344-1
Google Scholar
[22]
P.E. Jackson, Ion chromatography in environmental analysis. Encylopedia of analytical chemistry, (2000) pp.2779-2801.
Google Scholar
[23]
A.P. Mariano, R.C. Tomasella, L.M. De Oliveira, J.C.D.D.F. De Angelis, Biodegradability of diesel and biodiesel blends. African Journal of Biotechnology, 7(9), (2008) pp.1323-1328.
Google Scholar
[24]
A. Demirbas, Progress and recent trends in biodiesel fuels. Energy conversion and management, 50, (2009) pp.14-34.
DOI: 10.1016/j.enconman.2008.09.001
Google Scholar
[25]
A.C. Pinto, L.L.N. Guarieiro, M.J.C. Rezende, N.M. Ribeiro, E.A. Torres, W.A. Lopes, P.A.P. Pereira, J.B. Andrade, Biodiesel: An overview. J. Braz. Chem. Soc., 16(6B), (2005) pp.1313-1330.
DOI: 10.1590/s0103-50532005000800003
Google Scholar
[26]
Fangruima, M.A. Hanna, Biodiesel Production: A review. Bioresource Technology, 1, (1999) pp.1-15.
Google Scholar
[27]
The United States Department of Agriculture Natural Resources Conservation Service (USDA) Soil survey staff, keys to soil taxonomy, 8th edition, Washington, DC: Natural Resources, (1998).
DOI: 10.17138/tgft(2)188-196
Google Scholar